Browse > Article
http://dx.doi.org/10.12989/sem.2022.82.4.417

Passive seismic protection systems with mechanical metamaterials: A current review  

Guevara-Corzo, Jeffrey J. (School of Mechanical Engineering, Universidad Industrial de Santander)
Begambre-Carrillo, Oscar J. (School of Civil Engineering, Universidad Industrial de Santander)
Garcia-Sanchez, Jesus A. (Institute of Mechanical Engineering, Universidade Federal de Itajuba)
Sanchez-Acevedo, Heller G. (School of Mechanical Engineering, Universidad Industrial de Santander)
Publication Information
Structural Engineering and Mechanics / v.82, no.4, 2022 , pp. 417-434 More about this Journal
Abstract
In this work, a review of mechanical metamaterials and seismic protection systems that use them is carried out, focusing on passive protection systems. During the last years, a wide variety of classical systems of seismic protection have demonstrated to be an effective and practical way of reducing the seismic vulnerability of buildings, maintaining their health and structural integrity. However, with the emergence of metamaterials, which allow obtaining uncommon mechanical properties, new procedures and devices with high performance have been developed, reducing the seismic risk through novel approaches such as: seismic shields and the redirection of seismic waves; the use of stop band gaps and the construction of buried mass resonators; the design of pentamodal base isolators. These ideas are impacting traditional areas of structural engineering such as the design and building of highly efficient base isolation systems. In this work, recent advances in new seismic protection technologies and researches that integrate mechanical metamaterials are presented. A complete bibliometric analysis was carried out to identify and classify relevant authors and works related with passive seismic protection system based on mechanical metamaterial (pSPSmMMs). Finally, possible future scenarios for study and development of seismic isolators based on mechanical metamaterials are shown, identifying the relevant topics that have not yet been explored, as well as those with the greatest potential for future application.
Keywords
mechanical metamaterials; passive systems; seismic isolators; seismic protection;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Yasuda, H. and Yang, J. (2015), "Reentrant origami-based metamaterials with negative Poisson's ratio and bistability", Phys. Rev. Lett., 114(18), 1-5. https://doi.org/10.1103/PhysRevLett.114.185502.   DOI
2 Zeng, Y., Xu, Y., Yang, H., Muzamil, M., Xu, R., Deng, K., Peng, P. and Du, Q. (2020), "A Matryoshka-like seismic metamaterial with wide band-gap characteristics", Int. J. Solid. Struct., 185, 334-341. https://doi.org/10.1016/j.ijsolstr.2019.08.032.   DOI
3 Zhou, C., Wang, B., Ma, J. and You, Z. (2016), "Dynamic axial crushing of origami crash boxes", Int. J. Mech. Sci., 118, 1-12. https://doi.org/10.1016/j.ijmecsci.2016.09.001.   DOI
4 Calvi, P.M. and Calvi, G.M. (2018), "Historical development of friction-based seismic isolation systems", Soil Dyn. Earthq. Eng., 106, 14-30. https://doi.org/10.1016/j.soildyn.2017.12.003.   DOI
5 Baughman, R.H., Stafstrom, S., Cui, C. and Dantas, S.O. (1998), "Materials with negative compressibilities in one or more dimensions", Sci., 279(5356), 1522-1524. https://doi.org/10.1126/science.279.5356.1522.   DOI
6 Sadeghi, S. and Li, S. (2019), "Fluidic origami cellular structure with asymmetric Quasi-Zero stiffness for low-frequency vibration isolation", Smart Mater. Struct., 28, 11-14.
7 Schenk, M. and Guest, S.D. (2013), "Geometry of Miura-folded metamaterials", Proc. Nat. Acad. Sci., 110(9), 3276-3281. https://doi.org/10.1073/pnas.1217998110.   DOI
8 Schittny, R., Kadic, M., Guenneau, S. and Wegener, M. (2013b), "Experiments on transformation thermodynamics: molding the flow of heat", Phys. Rev. Lett., 110(19), 195901. https://doi.org/10.1103/PhysRevLett.110.195901.   DOI
9 Shim, J., Shan, S., Kosmrlj, A., Kang, S.H., Chen, E.R., Weaver, J.C. and Bertoldi, K. (2013), "Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials", Soft Mat., 9(34), 8198. https://doi.org/10.1039/C3SM51148K.   DOI
10 Shyu, T.C., Damasceno, P.F., Dodd, P.M., Lamoureux, A., Xu, L., Shlian, M., Shtein, M., Glotzer, S.C. and Kotov, N.A. (2015), "A kirigami approach to engineering elasticity in nanocomposites through patterned defects", Nature Mater., 14(8), 785-789. https://doi.org/10.1038/nmat4327.   DOI
11 Sigmund, O. (1995), "Tailoring materials with prescribed elastic properties", Mech. Mater., 20(4), 351-368. https://doi.org/10.1016/0167-6636(94)00069-7.   DOI
12 Silverberg, J.L., Evans, A.A., McLeod, L., Hayward, R.C., Hull, T., Santangelo, C.D. and Cohen, I. (2014), "Using origami design principles to fold reprogrammable mechanical metamaterials", Sci., 345(6197), 647-650. https://doi.org/10.1126/science.1252876.   DOI
13 Li, X. and Gao, H. (2016), "Mechanical metamaterials: Smaller and stronger", Nature Mater., 15(4), 373-374. https://doi.org/10.1038/nmat4591.   DOI
14 Kitamura, H., Kitamura, Y., Ito, M. and Sakamoto, M. (2004), "Analysis of the present situation of response control systems in Japan based on building survey database", J. JPN Assoc. Earthq. Eng., 4(3), 265-277. https://doi.org/10.5610/jaee.4.3_265.   DOI
15 Lakes, R.S. (1993), "Materials with structural hierarchy", Nature, 361, 511-515. https://doi.org/10.1038/361511a0.   DOI
16 Schittny, R., Buckmann, T., Kadic, M. and Wegener, M. (2013a), "Elastic measurements on macroscopic three-dimensional pentamode metamaterials", Appl. Phys. Lett., 103(23), 231905. https://doi.org/10.1063/1.4838663   DOI
17 Huang, J., Liu, W. and Shi, Z. (2017), "Surface-wave attenuation zone of layered periodic structures and feasible application in ground vibration reduction", Constr. Build. Mater., 141, 1-11. https://doi.org/10.1016/j.conbuildmat.2017.02.153.   DOI
18 Ishida, S., Suzuki, K. and Shimosaka, H. (2017), "Design and experimental analysis of origami-inspired vibration isolator with Quasi-Zero-Stiffness characteristic", J. Vib. Acoust., Trans., 139(5), 1-5. https://doi.org/10.1115/1.4036465.   DOI
19 Lakes, R. and Wojciechowski, K.W. (2008), "Negative compressibility, negative Poisson's ratio, and stability", Physica Status Solidi (B) Bas. Res., 245(3), 545-551. https://doi.org/10.1002/pssb.200777708.   DOI
20 Li, S. and Wang, K.W. (2015), "Fluidic origami: A plant-inspired adaptive structure with shape morphing and stiffness tuning", Smart Mater. Struct., 24(10), 105031.   DOI
21 Lorato, A., Innocenti, P., Scarpa, F., Alderson, A., Alderson, K.L., Zied, K.M., Ravirala, N., Miller, W., Smith, C.W. and Evans, K.E. (2010), "The transverse elastic properties of chiral honeycombs", Compos. Sci. Technol., 70(7), 1057-1063. https://doi.org/10.1016/j.compscitech.2009.07.008.   DOI
22 Kadic, M., Buckmann, T., Stenger, N., Thiel, M. and Wegener, M. (2012), "On the practicability of pentamode mechanical metamaterials", Appl. Phys. Lett., 100(19), 191901. https://doi.org/10.1063/1.4709436.   DOI
23 Jabary, R.N. and Madabhushi, S.P.G. (2015), "Tuned mass damper effects on the response of multi-storied structures observed in geotechnical centrifuge tests", Soil Dyn. Earthq. Eng., 77, 373-380. https://doi.org/10.1016/j.soildyn.2015.06.013.   DOI
24 Jiang, Y. and Li, Y. (2018), "3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores", Scientif. Report., 8(1), 1-11. https://doi.org/10.1038/s41598-018-20795-2.   DOI
25 Jung, H.J., Spencer Jr, B., Ni, Y. and Lee, I. (2004), "State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., 17(3-4), 493-526. https://doi.org/10.12989/sem.2004.17.3_4.493.   DOI
26 Kadic, M., Milton, G.W., van Hecke, M. and Wegener, M. (2019), "3D metamaterials", Nature Rev. Phys., 1(3), 198-210. https://doi.org/10.1038/s42254-018-0018-y.   DOI
27 Mazza, F. (2017), "Residual seismic load capacity of fire-damaged rubber bearings of R.C. base-isolated buildings", Eng. Fail. Anal., 79, 951-970. https://doi.org/10.1016/j.engfailanal.2017.06.011.   DOI
28 Filipov, E.T., Tachi, T., Paulino, G.H. and Weitz, D. A. (2015), "Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials", Proc. Nat. Acad. Sci., 112(40), 12321-12326. https://doi.org/10.1073/pnas.1509465112.   DOI
29 Fraternali, F., Amendola, A. and Benzoni, G. (2018), "Innovative seismic isolation devices based on lattice materials: A review", Ingegneria Sismica, 35(4), 93-113.
30 Ai, L. and Gao, X.L. (2019), "Topology optimization of 2-D mechanical metamaterials using a parametric level set method combined with a meshfree algorithm", Compos. Struct., 229, 111318. https://doi.org/10.1016/j.compstruct.2019.111318.   DOI
31 Alderson, A., Alderson, K.L., Attard, D., Evans, K.E., Gatt, R., Grima, J.N., Miller, W., Ravirala, N., Smith, C.W. and Zied, K. (2010), "Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading", Compos. Sci. Technol., 70(7), 1042-1048. https://doi.org/10.1016/j.compscitech.2009.07.009.   DOI
32 Babilio, E., Fabbrocino, F., Durand, M. and Fraternali, F. (2017), "On the mechanics of tetrakis-like lattices in the stretch-dominated regime", Extr. Mech. Lett., 15, 57-62. https://doi.org/10.1016/j.eml.2017.06.003.   DOI
33 Brule, S., Ungureanu, B., Achaoui, Y., Diatta, A., Aznavourian, R., Antonakakis, T., Craster, R., Enoch, S. and Guenneau, S. (2017d), "Metamaterial-like transformed urbanism", Innov. Infrastr. Solut., 2(1), 1-11. https://doi.org/10.1007/s41062-017-0063-x.   DOI
34 Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.   DOI
35 Bose, J. C. (1898), "On the rotation of plane of polarisation of electric wave by a twisted structure", Proc. Roy. Soc. London, 63, 146-152. https://doi.org/10.1098/rspl.1898.0019.   DOI
36 Brule, S., Enoch, S. and Guenneau, S. (2020), "Emergence of seismic metamaterials: Current state and future perspectives", Phys. Lett. A, 384(1), 126034. https://doi.org/10.1016/j.physleta.2019.126034.   DOI
37 Buckmann, T., Thiel, M., Kadic, M., Schittny, R. and Wegener, M. (2014b), "An elasto-mechanical unfeelability cloak made of pentamode metamaterials", Nature Commun., 5, 1-6. https://doi.org/10.1038/ncomms5130.   DOI
38 Bertoldi, K., Vitelli, V., Christensen, J. and van Hecke, M. (2017), "Flexible mechanical metamaterials", Nature Rev. Mater., 2(11), 1-11. https://doi.org/10.1038/natrevmats.2017.66.   DOI
39 Karpov, E.G. (2017), "Structural metamaterials with Saint-Venant edge effect reversal", Acta Materialia, 123, 245-254. https://doi.org/10.1016/j.actamat.2016.10.046.   DOI
40 Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024.   DOI
41 Boatti, E., Vasios, N. and Bertoldi, K. (2017), "Origami metamaterials for tunable thermal expansion", Adv. Mater., 29(26), 1-6. https://doi.org/10.1002/adma.201700360.   DOI
42 Achaoui, Y., Antonakakis, T., Brule, S., Craster, R.V., Enoch, S. and Guenneau, S. (2017), "Clamped seismic metamaterials: Ultra-low frequency stop bands", New J. Phys., 19(6), 1-13.
43 Braz-Cesar, M. and Carneiro De Barros, R. (2013), "Passive control of civil engineering structures", 4th International Conference on Integrity, Reliability and Failure of Mechanical Systems, 1-12.
44 Brule, S., Enoch, S. and Guenneau, S. (2017a), "Sols structures sous sollicitation dynamique : des metamateriaux en geotechnique", Revue Francaise de Geotechnique, 151, 4. https://doi.org/10.1051/geotech/2017010.   DOI
45 Milton, G.W. and Cherkaev, A.V. (1995), "Which elasticity tensors are realizable?", J. Eng. Mater. Technol., Trans., 117(4), 483-493. https://doi.org/10.1115/1.2804743.   DOI
46 Fabbrocino, F. and Amendola, A. (2017), "Discrete-to-continuum approaches to the mechanics of pentamode bearings", Compos. Struct., 167, 219-226. https://doi.org/10.1016/j.compstruct.2017.01.073.   DOI
47 Milton, G.W. (1992), "Composite materials with poisson's ratios close to - 1", J. Mech. Phys. Solid., 40(5), 1105-1137. https://doi.org/10.1016/0022-5096(92)90063-8.   DOI
48 Milton, G.W., Briane, M. and Willis, J.R. (2006), "On cloaking for elasticity and physical equations with a transformation invariant form", New J. Phys., 8(10), 248.   DOI
49 Mao, X., Souslov, A., Mendoza, C.I. and Lubensky, T.C. (2015), "Mechanical instability at finite temperature", Nature Commun., 6, 1-8. https://doi.org/10.1038/ncomms6968 (2015)..   DOI
50 Yuan, L., Shi, H., Ma, J. and You, Z. (2019), "Quasi-static impact of origami crash boxes with various profiles", Thin Wall. Struct., 141, 435-446. https://doi.org/10.1016/j.tws.2019.04.028.   DOI
51 Song, J., Chen, Y. and Lu, G. (2012), "Axial crushing of thin-walled structures with origami patterns", Thin Wall. Struct., 54, 65-71. https://doi.org/10.1016/j.tws.2012.02.007.   DOI
52 Silverberg, J.L., Na, J.H., Evans, A.A., Liu, B., Hull, T.C., Santangelo, C.D., Lang, R.J., Hayward, R.C. and Cohen, I. (2015), "Origami structures with a critical transition to bistability arising from hidden degrees of freedom", Nature Mater., 14(4), 389-393. https://doi.org/10.1038/nmat4232.   DOI
53 Vitelli, V. (2012), "Topological soft matter: Kagome lattices with a twist", Proc. Nat. Acad. Sci., 109(31), 12266-12267. https://doi.org/10.1073/pnas.1209950109.   DOI
54 Smith, D.R., Pendry, J.B. and Wiltshire, M.C.K. (2004), "Metamaterials and negative refractive index", Sci., 305(5685), 788-792. https://doi.org/10.1126/science.1096796.   DOI
55 van Eck, N.J. and Waltman, L. (2010), "Software survey: VOSviewer, a computer program for bibliometric mapping", Scientometr., 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3.   DOI
56 Lv, C., Krishnaraju, D., Konjevod, G., Yu, H. and Jiang, H. (2014), "Origami based mechanical metamaterials", Scientif. Report., 4, 5979. https://doi.org/10.1038/srep05979.   DOI
57 Soong, T.T. and Spencer, B.F. (2000), "Active, semi-active and hybrid control of structures", Bull. NZ Soc. Earthq. Eng., 33(3), 387-402. https://doi.org/10.5459/bnzsee.33.3.387-402.   DOI
58 Spadoni, A. and Ruzzene, M. (2012), "Elasto-static micropolar behavior of a chiral auxetic lattice", J. Mech. Phys. Solid., 60(1), 156-171. https://doi.org/10.1016/j.jmps.2011.09.012.   DOI
59 Tachi, T. and Miura, K. (2012), "Rigid-foldable cylinders and cells", J. Int. Assoc. Shell Spat. Struct., 53(4), 217-226.
60 Torrents, A., Schaedler, T.A., Jacobsen, A.J., Carter, W.B. and Valdevit, L. (2012), "Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale", Acta Materialia, 60(8), 3511-3523. https://doi.org/10.1016/j.actamat.2012.03.007.   DOI
61 Vogiatzis, P., Chen, S., Wang, X., Li, T. and Wang, L. (2017), "Topology optimization of multi-material negative Poisson's ratio metamaterials using a reconciled level set method", Comput. Aid. Des., 83, 15-32. https://doi.org/10.1016/j.cad.2016.09.009.   DOI
62 Milton, G.W. (2016), "Analytic materials", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 472(2195), 20160613. https://doi.org/10.1098/rspa.2016.0613.   DOI
63 Munn, R.W. (1972), "Role of the elastic constants in negative thermal expansion of axial solids", J. Phys. C: Solid State Phys., 5(5), 535-542.   DOI
64 Le, D.H., Xu, Y., Tentzeris, M.M. and Lim, S. (2020), "Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response", Extr. Mech. Lett., 36, 100670. https://doi.org/10.1016/j.eml.2020.100670.   DOI
65 Liu, S., Lv, W., Chen, Y. and Lu, G. (2016), "Deployable prismatic structures with rigid origami patterns", J. Mech. Robot., 8(3), 031002. https://doi.org/10.1115/1.4031953.   DOI
66 Mao, X. and Lubensky, T.C. (2011), "Coherent potential approximation of random nearly isostatic kagome lattice", Phys. Rev. E-Stat., Nonlin. Soft Mat. Phys., 83(1), 1-14. https://doi.org/10.1103/PhysRevE.83.011111.   DOI
67 Martin, A., Kadic, M., Schittny, R., Buckmann, T. and Wegener, M. (2012), "Phonon band structures of three-dimensional pentamode metamaterials", Phys. Rev. B-Condens. Mat. Mater. Phys., 86(15), 2-6. https://doi.org/10.1103/PhysRevB.86.155116.   DOI
68 Palermo, A. and Marzani, A. (2018), "Control of Love waves by resonant metasurfaces", Scientif. Report., 8(1), 1-8. https://doi.org/10.1038/s41598-018-25503-8.   DOI
69 Soukoulis, C.M. and Wegener, M. (2011), "Past achievements and future challenges in the development of three-dimensional photonic metamaterials", Nature Photon., 5(9), 523-530. https://doi.org/10.1038/nphoton.2011.154.   DOI
70 Mitchell, S.J., Pandolfi, A. and Ortiz, M. (2014), "Metaconcrete: Designed aggregates to enhance dynamic performance", J. Mech. Phys. Solid., 65(1), 69-81. https://doi.org/10.1016/j.jmps.2014.01.003.   DOI
71 Neville, R.M., Scarpa, F. and Pirrera, A. (2016), "Shape morphing Kirigami mechanical metamaterials", Scientif. Report., 6, 1-12. https://doi.org/10.1038/srep31067.   DOI
72 Al-Mulla, T. and Buehler, M.J. (2015), "Origami: Folding creases through bending", Nature Mater., 14(4), 366-368. https://doi.org/10.1038/nmat4258.   DOI
73 Bacigalupo, A. and Gambarotta, L. (2016), "Simplified modelling of chiral lattice materials with local resonators", Int. J. Solid. Struct., 83, 126-141. https://doi.org/10.1016/j.ijsolstr.2016.01.005.   DOI
74 Mousanezhad, D., Haghpanah, B., Ghosh, R., Hamouda, A.M., Nayeb-Hashemi, H. and Vaziri, A. (2016), "Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach", Theor. Appl. Mech. Lett., 6(2), 81-96. https://doi.org/10.1016/j.taml.2016.02.004.   DOI
75 Mu, D., Shu, H., Zhao, L. and An, S. (2020), "A review of research on seismic metamaterials", Adv. Eng. Mater., 22(4), 1-23. https://doi.org/10.1002/adem.201901148.   DOI
76 Muhlestein, M.B. and Haberman, M.R. (2016), "A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 472(2192), 20160438. https://doi.org/10.1098/rspa.2016.0438.   DOI
77 Oviedo, J.A. and Duque, M. del P. (2009), "Disipadores histereticos metalicos como sistemas de control de respuesta sismica en edificaciones", Revista EIA, (6), 105-120.
78 Ng, C. and Xu, Y. (2006), "Seismic response control of a building complex utilizing passive friction damper: Analytical study", Struct. Eng. Mech., 22(1), 85-105. https://doi.org/10.12989/sem.2006.22.1.085.   DOI
79 Nicolaou, Z.G. and Motter, A.E. (2012), "Mechanical metamaterials with negative compressibility transitions", Nature Materi., 11(7), 608-613. https://doi.org/10.1038/nmat3331.   DOI
80 Norris, A.N. (2014), "Mechanics of elastic networks", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 470(2172), 20140522. https://doi.org/10.1098/rspa.2014.0522.   DOI
81 Miura, K. (1975), "New structural form of sandwich core", J. Aircraft, 12(5), 437-441. https://doi.org/10.2514/3.44468.   DOI
82 Resch, R. (1968), "Experimental Structures", Architect-Researcher Conference, Proceedings of the American Institute of Architects.
83 Resch, R. (1970), "The design and analysis of kinematic folded plate systems", Proceedings of IASS Symposium on Folded Plates and Prismatic Structures.
84 Datta, T.K. (2003), "A state-of-the-art review on active control of structures", ISET J. Earthq. Technol., 40(1), 1-17.
85 Achaoui, Y., Ungureanu, B., Enoch, S., Brule, S. and Guenneau, S. (2016), "Seismic waves damping with arrays of inertial resonators", Extr. Mech. Lett., 8, 30-37. https://doi.org/10.1016/j.eml.2016.02.004.   DOI
86 Cummer, S.A., Christensen, J. and Alu, A. (2016), "Controlling sound with acoustic metamaterials", Nature Rev. Mater., 1(3), 1-13. https://doi.org/10.1038/natrevmats.2016.1.   DOI
87 D'Alessandro, L., Zega, V., Ardito, R. and Corigliano, A. (2018), "3D auxetic single material periodic structure with ultra-wide tunable bandgap", Scientif. Report., 8(1), 1-9. https://doi.org/10.1038/s41598-018-19963-1.   DOI
88 Forrai, A., Hashimoto, S., Funato, H. and Kamiyama. K. (2001), "Structural control of flexible structures", Comput. Control Eng. J., IET, 12(6), 257-262.   DOI
89 Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids Structure and Properties, Cambridge University Press, Cambridge.
90 Gurtner, G. and Durand, M. (2014), "Stiffest elastic networks", Proc. Roy. Soc. A: Math., Phys. Eng. Sci., 470(2164), 20130611. https://doi.org/10.1098/rspa.2013.0611.   DOI
91 Hyun, S. and Torquato, S. (2002), "Optimal and manufacturable two-dimensional, Kagome-like cellular solids", J. Mater. Res., 17(1), 137-144. https://doi.org/10.1557/JMR.2002.0021.   DOI
92 Jangid, R. (1995), "Dynamic characteristics of structures with multiple tuned mass dampers", Struct. Eng. Mech., 3(5), 497-509. https://doi.org/10.12989/sem.1995.3.5.497.   DOI
93 Brule, S., Javelaud, E.H., Enoch, S. and Guenneau, S. (2017c), "Flat lens effect on seismic waves propagation in the subsoil", Scientif. Report., 7(1), 1-9. https://doi.org/10.1038/s41598-017-17661-y.   DOI
94 Kadic, M., Buckmann, T., Schittny, R. and Wegener, M. (2013), "On anisotropic versions of three-dimensional pentamode metamaterials", New J. Phys., 15(2), 023029.   DOI
95 Kane, C.L. and Lubensky, T.C. (2013), "Topological boundary modes in isostatic lattices", Nat. Phys., 10(1), 39-45. https://doi.org/10.1038/nphys2835.   DOI
96 Lakes, R. (1993), "Advances in negative poisson's ratio materials", Adv. Mater., 5(4), 293-296. https://doi.org/10.1002/adma.19930050416.   DOI
97 Buckmann, T., Kadic, M., Schittny, R. and Wegener, M. (2015), "Mechanical metamaterials with anisotropic and negative effective mass-density tensor made from one constituent material", Physica Status Solidi (B) Bas. Res., 252(7), 1671-1674. https://doi.org/10.1002/pssb.201451698.   DOI
98 Buckmann, T., Schittny, R., Thiel, M., Kadic, M., Milton, G.W. and Wegener, M. (2014a), "On three-dimensional dilational elastic metamaterials", New J. Phys., 16(3), 033032.   DOI
99 Cai, W., Gladysiak, A., Aniola, M., Smith, V.J., Barbour, L.J. and Katrusiak, A. (2015), "Giant negative area compressibility tunable in a soft porous framework material", J. Am. Chem. Soc., 137(29), 9296-9301. https://doi.org/10.1021/jacs.5b03280.   DOI
100 Casablanca, O., Ventura, G., Garesci, F., Azzerboni, B., Chiaia, B., Chiappini, M. and Finocchio, G. (2018), "Seismic isolation of buildings using composite foundations based on metamaterials", J. Appl. Phys., 123(17), 174903. https://doi.org/10.1063/1.5018005.   DOI
101 Fabbrocino, F. and Carpentieri, G. (2017), "Three-dimensional modeling of the wave dynamics of tensegrity lattices", Compos. Struct., 173, 9-16. https://doi.org/10.1016/j.compstruct.2017.03.102.   DOI
102 Paulose, J., Chen, B.G.G. and Vitelli, V. (2015), "Topological modes bound to dislocations in mechanical metamaterials", Nature Phys., 11(2), 153-156. https://doi.org/10.1038/nphys3185.   DOI
103 Pendry, J.B. (2000), "Negative refraction makes a perfect lens", Phys. Rev. Lett., 85(18), 3966-3969. https://doi.org/10.1103/PhysRevLett.85.3966.   DOI
104 Waitukaitis, S., Menaut, R., Chen, B.G.G. and Van Hecke, M. (2015), "Origami multistability: From single vertices to metasheets", Phys. Rev. Lett., 114(5), 2-6. https://doi.org/10.1103/PhysRevLett.114.055503.   DOI
105 Elsevier (2020), SCOPUS, https://www.scopus.com/home.uri.
106 Fabbrocino, F., Amendola, A., Benzoni, G. and Fraternali, F. (2015), "Seismic application of pentamode lattices", Ing. Sismica, 33(1-2), 62-70.
107 Finocchio, G., Casablanca, O., Ricciardi, G., Alibrandi, U., Garesci, F., Chiappini, M. and Azzerboni, B. (2014), "Seismic metamaterials based on isochronous mechanical oscillators", Appl. Phys. Lett., 104(19), 191903. https://doi.org/10.1063/1.4876961.   DOI
108 Wang, K., Zhou, J., Ouyang, H., Cheng, L. and Xu, D. (2020), "A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning", Int. J. Mech. Sci., 176, 105548. https://doi.org/10.1016/j.ijmecsci.2020.105548.   DOI
109 Chen, B.G.G., Upadhyaya, N. and Vitelli, V. (2014), "Nonlinear conduction via solitons in a topological mechanical insulator", Proc. Nat. Acad. Sci., 111(36), 13004-13009. https://doi.org/10.1073/pnas.1405969111.   DOI
110 Chen, B.J., Tsai, C., Chung, L. and Chiang, T.C. (2006), "Seismic behavior of structures isolated with a hybrid system of rubber bearings", Struct. Eng. Mech., 22(6), 761-783. https://doi.org/10.12989/sem.2006.22.6.761.   DOI
111 Brule, S., Enoch, S., Guenneau, S. and Craster, R.V. (2017b), "Seismic metamaterials: Controlling surface rayleigh waves using analogies with electromagnetic metamaterials", World Scientific Handbook of Metamaterials and Plasmonics: Volume 2: Elastic, Acoustic, and Seismic Metamaterials, 301-337.
112 Calabrese, A., Losanno, D., Spizzuoco, M., Strano, S. and Terzo, M. (2019), "Recycled Rubber Fiber Reinforced Bearings (RR-FRBs)as base isolators for residential buildings in developing countries: The demonstration building of Pasir Badak, Indonesia", Eng. Struct., 192, 126-144. https://doi.org/10.1016/j.engstruct.2019.04.076.   DOI
113 Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W. and McNamara, R.J. (2008), "Energy dissipation systems for seismic applications: Current practice and recent developments", J. Struct. Eng., 134(1), 3-21. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3).   DOI
114 Tachi, T. (2013), "Designing freeform origami tessellations by generalizing resch's patterns", J. Mech. Des., Trans., 135(11), 1-10. https://doi.org/10.1115/1.4025389.   DOI
115 Tang, Y., Lin, G., Yang, S., Yi, Y.K., Kamien, R.D. and Yin, J. (2017), "Programmable Kiri-Kirigami Metamaterials", Adv. Mater., 29(10), 1-9. https://doi.org/10.1002/adma.201604262.   DOI
116 Xiang, X.M., Lu, G. and You, Z. (2020), "Energy absorption of origami inspired structures and materials", Thin Wall. Struct., 157, 107130. https://doi.org/10.1016/j.tws.2020.107130.   DOI
117 Wicks, N. and Hutchinson, J.W. (2004), "Sandwich plates actuated by a Kagome planar truss", J. Appl. Mech., Trans., 71(5), 652-662. https://doi.org/10.1115/1.1778720.   DOI
118 Wills, A.S., Ballou, R. and Lacroix, C. (2002), "Model of localized highly frustrated ferromagnetism: The kagome spin ice", Phys. Review B-Condens. Mat. Mater. Phys., 66(14), 1-6. https://doi.org/10.1103/PhysRevB.66.144407.   DOI
119 Wojciechowski, K.W. (1989), "Two-dimensional isotropic system with a negative poisson ratio", Phys. Lett. A, 137(1-2), 60-64. https://doi.org/10.1016/0375-9601(89)90971-7.   DOI
120 Yang, N., Deng, Y., Mao, Z.F., Chen, Y.T., Wu, N. and Niu, X.D. (2019), "New network architectures with tunable mechanical properties inspired by origami", Mater. Today Adv., 4, 100028. https://doi.org/10.1016/j.mtadv.2019.100028.   DOI
121 Yasuda, H., Miyazawa, Y., Charalampidis, E.G., Chong, C., Kevrekidis, P.G. and Yang, J. (2019), "Origami-based impact mitigation via rarefaction solitary wave creation", Sci. Adv., 5(5), eaau2835. https://doi.org/10.1126/sciadv.aau2835.   DOI
122 Yu, X., Zhou, J., Liang, H., Jiang, Z. and Wu, L. (2018), "Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review", Prog. Mater. Sci., 94, 114-173. https://doi.org/10.1016/j.pmatsci.2017.12.003.   DOI
123 Pong, W. and Tsai, C. (1995), "Seismic study of buildings with viscoelastic dampers", Struct. Eng. Mech., 3(6), 596-581. https://doi.org/10.12989/sem.1995.3.6.596.   DOI
124 Shan, S., Kang, S.H., Wang, P., Qu, C., Shian, S., Chen, E.R. and Bertoldi, K. (2014), "Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves", Adv. Function. Mater., 24(31), 4935-4942. https://doi.org/10.1002/adfm.201400665.   DOI
125 Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X. and Spadaccini, C.M. (2014), "Ultralight, ultrastiff mechanical metamaterials", Sci., 344(6190), 1373-1377. https://doi.org/10.1126/science.1252291.   DOI
126 Zhu, R., Yasuda, H., Huang, G.L. and Yang, J.K. (2018), "Kirigami-based elastic metamaterials with anisotropic mass density for subwavelength flexural wave control", Scientif. Report., 8(1), 1-11. https://doi.org/10.1038/s41598-017-18864-z.   DOI
127 Prall, D. and Lakes, R.S. (1997), "Properties of chiral honeycomb with Poisson's ratio of -1", Int. J. Mech. Sci., 39(3), 305-314. https://doi.org/10.1016/S0020-7403(96)00025-2.   DOI
128 Dong, H.W., Zhao, S.D., Wei, P., Cheng, L., Wang, Y.S. and Zhang, C. (2019), "Systematic design and realization of double-negative acoustic metamaterials by topology optimization", Acta Materialia, 172, 102-120. https://doi.org/10.1016/j.actamat.2019.04.042.   DOI
129 Ungureanu, B., Achaoui, Y., Enoch, S., Brule, S. and Guenneau, S. (2015), "Auxetic-like metamaterials as novel earthquake protections", arXiv preprint arXiv:1510.08785.
130 Wei, Z.Y., Guo, Z.V., Dudte, L., Liang, H.Y. and Mahadevan, L. (2013), "Geometric mechanics of periodic pleated origami", Phys. Rev. Lett., 110(21), 1-5. https://doi.org/10.1103/PhysRevLett.110.215501.   DOI
131 De Luca, A. and Guidi, L.G. (2019), "State of art in the worldwide evolution of base isolation design", Soil Dyn. Earthq. Eng., 125(2019), 105722. https://doi.org/10.1016/j.soildyn.2019.105722.   DOI
132 Maldovan, M. (2013), "Sound and heat revolutions in phononics", Nature, 503(7475), 209-217. https://doi.org/10.1038/nature12608.   DOI
133 Miller, W., Smith, C.W., Scarpa, F. and Evans, K.E. (2010), "Flatwise buckling optimization of hexachiral and tetrachiral honeycombs", Compos. Sci. Technol., 70(7), 1049-1056. https://doi.org/10.1016/j.compscitech.2009.10.022.   DOI
134 Spadoni, A., Ruzzene, M., Gonella, S. and Scarpa, F. (2009), "Phononic properties of hexagonal chiral lattices", Wave Motion, 46(7), 435-450. https://doi.org/10.1016/j.wavemoti.2009.04.002.   DOI
135 Veselago, V.G. (1968), "The electrodynamics of the substances with simultaneously negative values of є and μ", Soviet Phys. Uspekhi, 10(4), 509-514.   DOI
136 Chen, W. and Huang, X. (2019), "Topological design of 3D chiral metamaterials based on couple-stress homogenization", J. Mech. Phys. Solid., 131, 372-386. https://doi.org/10.1016/j.jmps.2019.07.014.   DOI
137 Hanna, B.H., Lund, J.M., Lang, R.J., Magleby, S.P. and Howell, L.L. (2014), "Waterbomb base: A symmetric single-vertex bistable origami mechanism", Smart Mater. Struct., 23(9), 094009.   DOI
138 Pozniak, A.A. and Wojciechowski, K.W. (2014), "Poisson's ratio of rectangular anti-chiral structures with size dispersion of circular nodes", Physica Status Solidi (B) Bas. Res., 251(2), 367-374. https://doi.org/10.1002/pssb.201384256.   DOI
139 Queheillalt, D.T. and Wadley, H.N.G. (2005), "Cellular metal lattices with hollow trusses", Acta Materialia, 53(2), 303-313. https://doi.org/10.1016/j.actamat.2004.09.024.   DOI
140 Ren, X., Shen, J., Tran, P., Ngo, T.D. and Xie, Y.M. (2018), "Auxetic nail: Design and experimental study", Compos. Struct., 184, 288-298. https://doi.org/10.1016/j.compstruct.2017.10.013.   DOI
141 Fleck, N.A., Deshpande, V.S. and Ashby, M.F. (2010a), "Micro-architectured materials: Past, present and future", Proc. Roy. Soc. A: Math., Phys. Eng. Sci., 466(2121), 2495-2516. https://doi.org/10.1098/rspa.2010.0215.   DOI
142 Florijn, B., Coulais, C. and van Hecke, M. (2014), "Programmable Mechanical Metamaterials", Phys. Rev. Lett., 113(17), 175503. https://doi.org/10.1103/PhysRevLett.113.175503.   DOI
143 Fraternali, F. (2016), "Seismic isolator device", Italy.
144 Fraternali, F., Carpentieri, G., Montuori, R., Amendola, A. and Benzoni, G. (2015), "On the use of mechanical metamaterials for innovative seismic isolations systems", COMPDYN 2015 - 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 349-358, May.
145 Frenzel, T., Kadic, M. and Wegener, M. (2017), "Three-dimensional mechanical metamaterials with a twist", Sci., 358(6366), 1072-1074. https://doi.org/10.1126/science.aao4640.   DOI
146 Gao, J., Xue, H., Gao, L. and Luo, Z. (2019), "Topology optimization for auxetic metamaterials based on isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 352, 211-236. https://doi.org/10.1016/j.cma.2019.04.021.   DOI
147 Choi, H. and Kim, J. (2010), "New installation scheme for viscoelastic dampers using cables", Can. J. Civil Eng., 37(9), 1201-1211. https://doi.org/10.1139/L10-068.   DOI
148 Chen, Y.J., Scarpa, F., Liu, Y.J. and Leng, J.S. (2013), "Elasticity of anti-tetrachiral anisotropic lattices", Int. J. Solid. Struct., 50(6), 996-1004. https://doi.org/10.1016/j.ijsolstr.2012.12.004.   DOI
149 Chen, Z., Wu, T., Nian, G., Shan, Y., Liang, X., Jiang, H. and Qu, S. (2019), "Ron resch origami pattern inspired energy absorption structures", J. Appl. Mech., Trans., 86(1), 011005. https://doi.org/10.1115/1.4041415.   DOI
150 Cheung, K.C., Tachi, T., Calisch, S. and Miura, K. (2014), "Origami interleaved tube cellular materials", Smart Mater. Struct., 23(9), 094012.   DOI
151 Colombi, A., Colquitt, D., Roux, P., Guenneau, S. and Craster, R.V. (2016a), "A seismic metamaterial: The resonant metawedge", Scientif. Report., 6(1), 1-6. https://doi.org/10.1038/srep27717 (2016).   DOI
152 Colombi, A., Roux, P., Guenneau, S., Gueguen, P. and Craster, R.V. (2016b), "Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances", Scientif. Report., 6(1), 1-7. https://doi.org/10.1038/srep19238.   DOI
153 Witarto, W., Wang, S.J., Yang, C.Y., Nie, X., Mo, Y.L., Chang, K.C., Tang, Y. and Kassawara, R. (2018), "Seismic isolation of small modular reactors using metamaterials", AIP Adv., 8(4), 045307. https://doi.org/10.1063/1.5020161.   DOI
154 Xie, Y.M., Yang, X., Shen, J., Yan, X., Ghaedizadeh, A., Rong, J., Huang, X. and Zhou, S. (2014), "Designing orthotropic materials for negative or zero compressibility", Int. J. Solid. Struct., 51(23-24), 4038-4051. https://doi.org/10.1016/j.ijsolstr.2014.07.024.   DOI
155 Grima, J.N., Gatt, R. and Farrugia, P.S. (2008), "On the properties of auxetic meta-tetrachiral structures", Physica Status Solidi (B) Bas. Res., 245(3), 511-520. https://doi.org/10.1002/pssb.200777704.   DOI
156 Spencer, B.F. and Soong, T.T. (1999), "New applications and development of active, semi-active and hybrid control techniques for seismic and non-seismic vibrations in the USA", Proceedings of International Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibration of Structures, Cheju, Korea.
157 Resch, R. and Christiansen, H. (1970), "Kinematic folded plate system", IASS Symposium.
158 Zhang, G. and Khandelwal, K. (2019), "Computational design of finite strain auxetic metamaterials via topology optimization and nonlinear homogenization", Comput. Meth. Appl. Mech. Eng., 356, 490-527. https://doi.org/10.1016/j.cma.2019.07.027.   DOI
159 Gatt, R., Attard, D., Farrugia, P.S., Azzopardi, K.M., Mizzi, L., Brincat, J.P. and Grima, J.N. (2013), "A realistic generic model for anti-tetrachiral systems", Physica Status Solidi (B) Bas. Res., 250(10), 2012-2019. https://doi.org/10.1002/pssb.201384246.   DOI
160 Goodwin, A.L., Keen, D.A. and Tucker, M.G. (2008), "Large negative linear compressibility of Ag3[Co(CN)6]", Proc. Nat. Acad. Sci., 105(48), 18708-18713. https://doi.org/10.1073/pnas.0804789105.   DOI