DOI QR코드

DOI QR Code

Design and Manufacturing of Mechanical Metamaterials: A Review

기계적 메타물질 설계 및 제조방안

  • Kim, Min-Kyeom (Department of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Seunghyun (Department of Mechanical Engineering, Sungkyunkwan University) ;
  • Yun, Jae-Won (Department of Mechanical Engineering, Sungkyunkwan University) ;
  • Jeong, Hyo Gyun (Department of Mechanical Engineering, Sungkyunkwan University) ;
  • Kwak, Min-Jun (Department of Mechanical Engineering, Sungkyunkwan University) ;
  • Ahn, Yea-Lin (Department of Mechanical Engineering, Sungkyunkwan University) ;
  • Park, Chan-Wook (Department of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Youn-Chul (School of Chemical Engineering, Sungkyunkwan University) ;
  • Suhr, Jonghwan (Department of Mechanical Engineering, Sungkyunkwan University)
  • Received : 2021.06.28
  • Accepted : 2021.08.02
  • Published : 2021.09.03

Abstract

As an additive manufacturing achieves technological advances, it enables to manufacture complex structures with saving a cost and time. Therefore, metamaterials, which has geometric complexity, have gradually gathered attention due to the unprecedented properties: the unprecedented mechanical, thermal, electromagnetic, and optical properties. The metamaterials could exhibit a high potential in engineering applications, and thus it has been steadily investigated to design or/and develop novel metamaterials. Here, mechanical metamaterials, which had been reported, were reviewed to suggest the way to design and fabricate the metamaterials for industrial applications.

적층제조 기술의 발전으로 복잡한 구조의 제조가 용이해짐에 따라, 기존에 존재하지 않은 특성을 지닌 메타물질에 대한 관심이 커지고 있다. 기존에 존재하지 않은 기계, 음향, 열, 전자기 및 광학 특성을 지닌 메타물질은 높은 공학응용(Engineering applications) 가능성을 보여, 새로운 메타물질 개발 및 설계방안에 대한 연구를 지속적으로 진행하고 있다. 이에 본 논문에서는 메타물질의 여러 특성 중 기존에 존재하지 않은 기계적 특성을 지닌 메타물질의 특성, 거동 및 물성을 소개하고 설계방안을 제시하고자 한다. 또한 설계한 메타물질을 제조하기 위해 여러 적층제조 방식별 메타물질 제조특성 들을 검토하여, 메타물질의 산업에서의 활용 가능성을 제시하고자 한다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 20CTAP-C157950-01)과 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20013794).

References

  1. R.S. Kshetrimayum, "A Brief Intro to Metamaterials," IEEE Potentials, Vol. 23, No. 5, 2004, pp. 44-46. https://doi.org/10.1109/MP.2005.1368916
  2. V.G. Veselago, "Electrodynamics of Substances with Simultaneously Negative and", Usp. Fiz. Nauk, Vol. 92, No. 7, 1967, pp. 517-526. https://doi.org/10.3367/UFNr.0092.196707d.0517
  3. J.B. Pendry, A.J. Holden, D.J. Robbins, and W. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 1999, pp. 2075-2084. https://doi.org/10.1109/22.798002
  4. J.B. Pendry, "Negative Refraction Makes a Perfect Lens," Physical Review Letters, Vol. 85, No. 18, 2000, pp. 3966. https://doi.org/10.1103/PhysRevLett.85.3966
  5. M. Brun, S. Guenneau, and A.B. Movchan, "Achieving Control of In-plane Elastic Waves," Applied Physics Letters, Vol. 94, No. 6, 2009, 061903. https://doi.org/10.1063/1.3068491
  6. T.J. Rainsford, S.P. Mickan, and D. Abbott, "T-ray Sensing Applications: Review of Global Developments," Smart Structures, Devices, and Systems II, Vol. 5649, 2005, pp. 826-838.
  7. K.B. Alici and E. Ozbay, "Radiation Properties of a Split Ring Resonator and Monopole Composite," Physica Status Solidi (b), Vol. 244, No. 4, 2007, pp. 1192-1196. https://doi.org/10.1002/pssb.200674505
  8. M. Kadic, G.W. Milton, M. van Hecke, and M. Wegener, "3D Metamaterials," Nature Reviews Physics, Vol. 1, No. 3, 2019, pp. 198-210. https://doi.org/10.1038/s42254-018-0018-y
  9. R. Panwar and J.R. Lee, "Recent Advances in Thin and Broadband Layered Microwave Absorbing and Shielding Structures for Commercial and Defense Applications," Functional Composites and Structures, Vol. 1, No. 3, 2019, 032001. https://doi.org/10.1088/2631-6331/ab2863
  10. J.J. do Rosario, E.T. Lilleodden, M. Waleczek, R. Kubrin, A.Y. Petrov, P.N. Dyachenko, J.E. Sabisch, K. Nielsch, N. Huber M. Eich, and G.A. Shcmeider, "Self-Assembled Ultra High Strength, Ultra Stiff Mechanical Metamaterials Based on Inverse Opals," Advanced Engineering Materials, Vol. 17, No. 10, 2015, pp. 1420-1424. https://doi.org/10.1002/adem.201500118
  11. K. Bertoldi and M. Boyce, "Mechanically Triggered Transformations of Phononic Band Gaps in Periodic Elastomeric Structures," Physical Review B, Vol. 77, No. 5, 2008, 052105. https://doi.org/10.1103/physrevb.77.052105
  12. S. Babaee, P. Wang, and K. Bertoldi, "Three-dimensional Adaptive Soft Phononic Crystals," Journal of Applied Physics, Vol. 117, No. 24, 2015, 244903. https://doi.org/10.1063/1.4923032
  13. D. Mousanezhad, S. Babaee, R. Ghosh, E. Mahdi, K. Bertoldi, and A. Vaziri, "Honeycomb Phononic Crystals with Self-similar Hierarchy," Physical Review B, Vol. 92, No. 10, 2015, 104304. https://doi.org/10.1103/physrevb.92.104304
  14. K. Bertoldi and M.C. Boyce, "Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations," Physical Review B, Vol. 78, No. 18, 2008, 184107. https://doi.org/10.1103/physrevb.78.184107
  15. C.A. Steeves and A.G. Evans, "Optimization of Thermal Protection Systems Utilizing Sandwich Structures with Low Coefficient of Thermal Expansion Lattice Hot Faces," Journal of the American Ceramic Society, Vol. 94, No. S1, 2011, pp. s55-s61. https://doi.org/10.1111/j.1551-2916.2011.04447.x
  16. G. Lin, J. Li, P. Chen, W. Sun, S.A. Chizhik, A.A. Makhaniok, G.B. Melnikova, and T.A. Kuznetsova, "Buckling of Lattice Columns Made from Three-dimensional Chiral Mechanical Metamaterials," International Journal of Mechanical Sciences, Vol. 194, 2021, 106208. https://doi.org/10.1016/j.ijmecsci.2020.106208
  17. J. Berger, H. Wadley, and R. McMeeking, "Mechanical Meta-materials at the Theoretical Limit of Isotropic Elastic Stiffness," Nature, Vol. 543, No. 7646, 2017, pp. 533-537. https://doi.org/10.1038/nature21075
  18. T. Frenzel, M. Kadic, and M. Wegener, "Three-dimensional Mechanical Metamaterials with a Twist," Science, Vol. 358, No. 6366, 2017, 1072-1074. https://doi.org/10.1126/science.aao4640
  19. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter, "Ultralight metallic Microlattices," Science, Vol. 334, No. 6058, 2011, pp. 962-965. https://doi.org/10.1126/science.1211649
  20. L. Dong, "Mechanical Responses of Ti-6Al-4V Cuboctahedral Truss Lattice Structures," Composite Structures, Vol. 235, 2020, 111815. https://doi.org/10.1016/j.compstruct.2019.111815
  21. V.S. Deshpande, N.A. Fleck, and M.F. Ashby, "Effective Properties of the Octet-truss Lattice Material," Journal of the Mechanics and Physics of Solids, Vol. 49, No. 8, 2001, pp. 1747-1769. https://doi.org/10.1016/S0022-5096(01)00010-2
  22. L. Yang, O. Harrysson, H. West, and D. Cormier, "Mechanical Properties of 3D Re-entrant Honeycomb Auxetic Structures Realized via Additive Manufacturing," International Journal of Solids and Structures, Vol. 69, 2015, pp. 475-490. https://doi.org/10.1016/j.ijsolstr.2015.05.005
  23. J. Zhang, G. Lu, Z. Wang, D. Ruan, A. Alomarah, and Y. Durandet, "Large Deformation of an Auxetic Structure in Tension: Experiments and Finite Element Analysis," Composite Structures, Vol. 184, 2018, pp. 92-101. https://doi.org/10.1016/j.compstruct.2017.09.076
  24. E. Barchiesi, M. Spagnuolo, and L. Placidi, "Mechanical Meta-materials: a State of the Art," Mathematics and Mechanics of Solids, Vol. 24, No. 1, 2019, 212-234. https://doi.org/10.1177/1081286517735695
  25. R. Lakes, "Foam Structures with a Negative Poisson's Ratio," Science, Vol. 235, No. 4792, 1987, pp. 1038-1041. https://doi.org/10.1126/science.235.4792.1038
  26. T.-C. Lim, "Auxetic Materials and Structures," Springer, 2015.
  27. G.N. Greaves, A. Greer, R.S. Lakes, and T. Rouxel, "Poisson's Ratio and Modern Materials," Nature Materials, Vol. 10, No. 11, 2011, pp. 823-837. https://doi.org/10.1038/nmat3134
  28. R. Lakes and K. Elms, "Indentability of Conventional and Negative Poisson's Ratio Foams," Journal of Composite Materials, Vol. 27, No. 12, 1993, pp. 1193-1202. https://doi.org/10.1177/002199839302701203
  29. R. Lakes, "Design Considerations for Materials with Negative Poisson's Ratios," Journal of Mechanical Design, Vol. 115, No. 4, 1993, pp. 696-700. https://doi.org/10.1115/1.2919256
  30. F. Scarpa and P. Tomlin, "On the Transverse Shear Modulus of Negative Poisson's Ratio Honeycomb Structures," Fatigue & Fracture of Engineering Materials & Structures, Vol. 23, No. 8, 2000, pp. 717-720. https://doi.org/10.1046/j.1460-2695.2000.00278.x
  31. M. Bianchi, F.L. Scarpa, and C.W. Smith, "Stiffness and Energy Dissipation in Polyurethane Auxetic Foams," Journal of Materials Science, Vol. 43, No. 17, 2008, pp. 5851-5860. https://doi.org/10.1007/s10853-008-2841-5
  32. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang, and C.M. Spadaccini, "Ultralight, Ultrastiff Mechanical Metamaterials," Science, Vol. 344, No. 6190, 2014, Pp. 1373-1377. https://doi.org/10.1126/science.1252291
  33. R.J. Nedoushan and W.-R. Yu, "A New Auxetic Structure with Enhanced Stiffness via Stiffened Elliptical Perforations," Functional Composites and Structures, Vol. 2, No. 4, 2020, 045006. https://doi.org/10.1088/2631-6331/abd373
  34. K. Zied and M. AL-Grafi, "Design of Auxetic Sandwich Panel Faceplates Comprising Cellular Networks with High Stiffness and Negative Poisson's Ratio," Advanced Composite Materials, Vol. 24(sup1), 2015, pp. 175-196. https://doi.org/10.1080/09243046.2015.1052614
  35. A.A. Zadpoor, "Mechanical Meta-materials," Materials Horizons, Vol. 3, No. 5, 2016, pp. 371-381. https://doi.org/10.1039/C6MH00065G
  36. I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, "Additive Manufacturing Technologies," Springer2014.
  37. K.V. Wong and A. Hernandez, "A Review of Additive Manufacturing," SRN Mechanical Engineering, Vol. 2012, 2012, pp. 1-10.
  38. T. Tancogne-Dejean and D. Mohr, E"lastically-isotropic Truss Lattice Materials of Reduced Plastic Anisotropy," International Journal of Solids and Structures, Vol. 138, 2018, pp. 24-39. https://doi.org/10.1016/j.ijsolstr.2017.12.025
  39. T. Tancogne-Dejean, M. Diamantopoulou, M.B. Gorji, C. Bonatti, and D. Mohr, "3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness," Advanced Materials, Vol. 30, No. 45, 2018, 1803334. https://doi.org/10.1002/adma.201803334
  40. R. Xue, X. Cui, P. Zhang, K. Liu, Y. Li, W. Wu, and H. Liao, "Mechanical Design and Energy Absorption Performances of Novel Dual Scale Hybrid Plate-lattice Mechanical Metamaterials," Extreme Mechanics Letters, Vol. 40, 2020, 100918. https://doi.org/10.1016/j.eml.2020.100918
  41. C. Crook, J. Bauer, A.G. Izard, C.S. de Oliveira, J.M.d.S.e Silva, J. B. Berger, and L. Valdevit, "Plate-nanolattices at the Theoretical Limit of Stiffness and Strength," Nature Communications, Vol. 11, No. 1, 2020, pp. 1-11. https://doi.org/10.1038/s41467-019-13993-7
  42. E. Oh, J. Lee, and J. Suhr, "3D Printable Composite Materials: A Review and Prospective," Composites Research, Vol. 31, No. 5, 2018, pp. 192-201.
  43. J. Dulieu-Barton and M. Fulton, "Mechanical Properties of a Typical Stereolithography Resin," Strain, Vol. 36, No. 2, 2000, 81-87. https://doi.org/10.1111/j.1475-1305.2000.tb01177.x
  44. S.K. Tiwari, S. Pande, S. Agrawal, and S.M. Bobade, "Selection of Selective Laser Sintering Materials for Different Applications," Rapid Prototyping Journal, Vol. 21, No. 6, 2015, pp. 630-648. https://doi.org/10.1108/RPJ-03-2013-0027
  45. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, "Review of Selective Laser Melting: Materials and Applications," Applied Physics Reviews, Vol. 2, No. 4, 2015, 041101. https://doi.org/10.1063/1.4935926
  46. B. Song, S. Dong, S. Deng, H. Liao, and C. Coddet," Microstructure and Tensile Properties of Iron Parts Fabricated by Selective Laser Melting," Optics & Laser Technology, Vol. 56, 2014, pp. 451-460. https://doi.org/10.1016/j.optlastec.2013.09.017
  47. Y. Wang, J. Bergstrom, and C. Burman, "Thermal Fatigue Behavior of an Iron-based Laser Sintered Material," Materials Science and Engineering: A, Vol. 513, 2009, pp. 64-71. https://doi.org/10.1016/j.msea.2009.01.053
  48. A.B. Spierings, N. Herres, and G. Levy, "Influence of the Particle Size Distribution on Surface Quality and Mechanical Properties in AM Steel Parts," Rapid Prototyping Journal, Vol. 17 No. 3, 2011, pp. 195-202. https://doi.org/10.1108/13552541111124770
  49. K. Guan, Z. Wang, M. Gao, X. Li, and X. Zeng, "Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel," Materials & Design, Vol. 50, 2013, pp. 581-586. https://doi.org/10.1016/j.matdes.2013.03.056
  50. A. Barbas, A.-S. Bonnet, P. Lipinski, R. Pesci, and G. Dubois, "Development and Mechanical Characterization of Porous Titanium Bone Substitutes," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 9, 2012, pp. 34-44. https://doi.org/10.1016/j.jmbbm.2012.01.008
  51. B. Vandenbroucke and J.P. Kruth," Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts," Rapid Prototyping Journal, Vol. 13, No. 4, 2007, pp. 196-203. https://doi.org/10.1108/13552540710776142
  52. E. Chlebus, B. Kuznicka, T. Kurzynowski, and B. Dybala, "Microstructure and Mechanical Behaviour of Ti-6Al-7Nb Alloy Produced by Selective Laser Melting," Materials Characterization, Vol. 62, No. 5, 2011, pp. 488-495. https://doi.org/10.1016/j.matchar.2011.03.006
  53. L. Zhang, D. Klemm, J. Eckert, Y. Hao, and T. Sercombe, "Manufacture by Selective Laser Melting and Mechanical Behavior of a Biomedical Ti-24Nb-4Zr-8Sn Alloy," Scripta Materialia, Vol. 65, No. 1, 2011, pp. 21-24. https://doi.org/10.1016/j.scriptamat.2011.03.024
  54. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, "Single Track Formation in Selective Laser Melting of Metal Powders," Journal of Materials Processing Technology, Vol. 210, No. 12, 2010, pp. 1624-1631. https://doi.org/10.1016/j.jmatprotec.2010.05.010
  55. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng, "The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting," Journal of Alloys and Compounds, Vol. 513, 2012, pp. 518-523. https://doi.org/10.1016/j.jallcom.2011.10.107
  56. L. Rickenbacher, T. Etter, S. Hovel, and K. Wegener, "High Temperature Material Properties of IN738LC Processed by Selective Laser Melting (SLM) Technology," Rapid Prototyping Journal, Vol. 19, No. 4, 2013, pp. 282-290. https://doi.org/10.1108/13552541311323281
  57. T. Vilaro, C. Colin, J.-D. Bartout, L. Naze, and M. Sennour, "Microstructural and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickel-base Superalloy," Materials Science and Engineering: A, Vol. 534, 2012, pp. 446-451. https://doi.org/10.1016/j.msea.2011.11.092
  58. F. Wang, "Mechanical Property Study on Rapid Additive Layer Manufacture Hastelloy® X Alloy by Selective Laser Melting Technology," The International Journal of Advanced Manufacturing Technology, Vol. 58, No. 5-8, 2012, pp. 545-551. https://doi.org/10.1007/s00170-011-3423-2
  59. P. Dudek and A. Rapacz-Kmita, "Rapid Prototyping: Technologies, Materials and Advances," Archives of Metallurgy and Materials, Vol. 61, No. 2A, 2016, pp. 891-896. https://doi.org/10.1515/amm-2016-0151
  60. N.A. Meisel and C.B. Williams, "Design for Additive Manufacturing: an Investigation of Key Manufacturing Considerations in Multi-material PolyJet 3D Printing," Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, 2014, pp. 747-763.
  61. Y. Heo, S. Iwanaga, and S. Takeuchi, "A Nanochannel Fabrication Technique by Two-photon Direct Laser Writing," 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, pp. 997-1000.
  62. A.R. Nassar, E.W. Reutzel, S.W. Brown, J.P. Morgan Jr, J.P. Morgan, D.J. Natale, R.L. Tutwiler, D.P. Feck, and J.C. Banks, "Sensing for Directed Energy Deposition and Powder Bed Fusion Additive Manufacturing at Penn State University," Laser 3D Manufacturing III, Vol. 9738, 2016, 97380R.
  63. M. Juhasz, R. Tiedemann, G. Dumstorff, J. Walker, A. Du Plessis, B. Conner, W. Lang, and E. MacDonald, "Hybrid Directed Energy Deposition for Fabricating Metal Structures with Embedded Sensors," Additive Manufacturing, Vol. 35, 2020, 101397. https://doi.org/10.1016/j.addma.2020.101397
  64. M. Sanami, "Auxetic Materials for Biomedical Applications," University of Bolton, 2015.
  65. Y. Liu, "Mechanical Properties of a New Type of Plate-lattice Structures," International Journal of Mechanical Sciences, Vol. 192 (2021) 106141. https://doi.org/10.1016/j.ijmecsci.2020.106141
  66. A. Riccio, A. Raimondo, A. Sellitto, V. Acanfora, and M. Zarrelli, "Multifunctional Polypropylene Core for Aerospace Sandwich Composite Panels," Procedia Engineering 167, 2016, pp. 64-70. https://doi.org/10.1016/j.proeng.2016.11.670
  67. S. Duan, W. Wen, and D. Fang, "Additively-manufactured Anisotropic and Isotropic 3D Plate-lattice Materials for Enhanced Mechanical Performance: Simulations & Experiments", Acta Materialia, Vol. 199, 2020, pp. 397-412. https://doi.org/10.1016/j.actamat.2020.08.063
  68. S.C. Han and K. Kang, "Another Stretching-dominated Micro-architectured Material, Shellular," Materials Today, Vol. 31, 2019, pp. 31-38. https://doi.org/10.1016/j.mattod.2019.05.018
  69. D.W. Abueidda, M. Elhebeary, C.-S.A. Shiang, S. Pang, R.K.A. Al-Rub, and I.M. Jasiuk, "Mechanical Properties of 3D Printed Polymeric Gyroid Cellular Structures: Experimental and Finite Element Study," Materials & Design, Vol. 165, 2019, 107597. https://doi.org/10.1016/j.matdes.2019.107597
  70. S.M. Sajadi, P.S. Owuor, S. Schara, C.F. Woellner, V. Rodrigues, R. Vajtai, J. Lou, D.S. Galvao, C.S. Tiwary, and P.M. Ajayan, "Multiscale Geometric Design Principles Applied to 3D Printed Schwarzites," Advanced Materials, Vol. 30, No. 1, 2018, 1704820. https://doi.org/10.1002/adma.201704820
  71. S.C. Han, J.W. Lee, and K. Kang, "A New Type Of Low Density Material: Shellular," Advanced Materials, Vol. 27, No. 37, 2015, pp. 5506-5511. https://doi.org/10.1002/adma.201501546
  72. D.W. Abueidda, M. Bakir, R.K. A. Al-Rub, J.S. Bergstrom, N.A. Sobh, and I. Jasiuk, "Mechanical Properties of 3D Printed Polymeric Cellular Materials with Triply Periodic Minimal Surface Architectures," Materials & Design, Vol. 122, 2017, pp. 255-267. https://doi.org/10.1016/j.matdes.2017.03.018
  73. A. Demharter, "Polyurethane Rigid Foam, a Proven Thermal Insulating Material for Applications Between +130℃ and -196℃," Cryogenics, Vol. 38, No. 1, 1998, pp. 113-117. https://doi.org/10.1016/S0011-2275(97)00120-3
  74. J. Lefebvre, B. Bastin, M. Le Bras, S. Duquesne, R. Paleja, and R. Delobel, "Thermal Stability and fire Properties of Conventional Flexible Polyurethane Foam Formulations," Polymer Degradation and Stability, Vol. 88, No. 1, 2005, pp. 28-34. https://doi.org/10.1016/j.polymdegradstab.2004.01.025
  75. C.H. Sung, K.S. Lee, K.S. Lee, S.M. Oh, J.H. Kim, M.S. Kim, and H.M. Jeong," Sound Damping of a Polyurethane Foam Nanocomposite," Macromolecular Research, Vol. 15, No. 5, 2007, pp. 443-448. https://doi.org/10.1007/BF03218812
  76. H. Mao, R. Rumpler, M. Gaborit, P. Goransson, J. Kennedy, D. O'Connor, D. Trimble, and H. Rice, "Twist, Tilt and Stretch: From Isometric Kelvin Cells to Anisotropic Cellular Materials," Materials & Design, Vol. 193, 2020, 108855. https://doi.org/10.1016/j.matdes.2020.108855
  77. C. Zhou, P. Zhu, X. Liu, X. Dong, and D. Wang, "The Toughening Mechanism of Core-shell Particles by the Interface Interaction and Crystalline Transition in Polyamide 1012," Composites Part B: Engineering, Vol. 206, 2021, 108539. https://doi.org/10.1016/j.compositesb.2020.108539
  78. A. Alderson and K. Alderson, "Auxetic Materials," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 221, No. 4, 2007, pp. 565-575. https://doi.org/10.1243/09544100jaero185
  79. R. Underhill, "Defense Applications of Auxetic Materials," Advanced Materials, Vol. 1, No. 1, 2014, pp. 7-12. https://doi.org/10.1002/adma.19890010104
  80. Z. Wang, A. Zulifqar, and H. Hu, "Auxetic Composites in Aerospace Engineering," Advanced Composite Materials for Aerospace Engineering, Elsevier, 2016, pp. 213-240.
  81. J. Choi and R. Lakes, "Design of a Fastener Based on Negative Poisson's Ratio Foam," Cellular Polymers, Vol. 10, No. 3, 1991, pp. 205-212.
  82. M. Ali, M. Zeeshan, S. Ahmed, B. Qadir, Y. Nawab, A.S. Anjum, and R. Riaz, "Development and Comfort Characterization of 2d-woven Auxetic Fabric for Wearable and Medical Textile Applications," Clothing and Textiles Research Journal, Vol. 36, No. 3, 2018, pp. 199-214. https://doi.org/10.1177/0887302x18768048
  83. Y. Jiang, Z. Liu, N. Matsuhisa, D. Qi, W.R. Leow, H. Yang, J. Yu, G. Chen, Y. Liu C. Wan, Z. Liu, and X. Chen, "Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors," Advanced Materials, Vol. 30, No. 12, 2018, 1706589. https://doi.org/10.1002/adma.201706589
  84. H.W. Kim, T.Y. Kim, H.K. Park, I. You, J. Kwak, J.C. Kim, H. Hwang, H.S. Kim, and U. Jeong, "Hygroscopic Auxetic On-skin Sensors for Easy-to-handle Repeated Daily Use," ACS Applied Materials & Interfaces, Vol. 10, No. 46, 2018, pp. 40141-40148. https://doi.org/10.1021/acsami.8b13857
  85. D.J.N. Amorim, T. Nachtigall, and M.B. Alonso, "Exploring Mechanical Meta-material Structures Through Personalised Shoe Sole Design," Proceedings of the ACM Symposium on Computational Fabrication, 2019, pp. 1-8.
  86. G. Imbalzano, P. Tran, T.D. Ngo, and P.V. Lee, "Three-dimensional Modelling of Auxetic Sandwich Panels for Localised Impact Resistance," Journal of Sandwich Structures & Materials, Vol. 19, No. 3, 2017, pp. 291-316. https://doi.org/10.1177/1099636215618539
  87. O. Duncan, T. Shepherd, C. Moroney, L. Foster, P.D. Venkatraman, K. Winwood, T. Allen, and A. Alderson, "Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection," Applied Sciences, Vol. 8, No. 6, 2018, 941. https://doi.org/10.3390/app8060941
  88. A.V. Bulanov and O.A. Bludova, "Using Auxetics for Designing the Coronary Vessels Stents," Politech. Student J., 2017.
  89. M. Dhanasekar, D. Thambiratnam, T. Chan, S. Noor-E-Khuda, and T. Zahra, "Modelling of Masonry Walls Rendered with Auxetic Foam Layers Against Vehicular Impacts," The Proceedings of the16th International Brick and Block Masonry Conference, Padova, Italy, 2016, pp. 977-984.
  90. K.E. Evans and K. Alderson, "Auxetic Materials: the Positive Side of Being Negative," Engineering Science & Education Journal, Vol. 9, No. 4, 2000, pp. 148-154. https://doi.org/10.1049/esej:20000402
  91. M. Avellaneda and P.J. Swart, "Calculating the Performance of 1-3 Piezoelectric Composites for Hydrophone Applications: an Effective Medium Approach," The Journal of the Acoustical Society of America, Vol. 103, No. 3, 1998, pp. 1449-1467. https://doi.org/10.1121/1.421306
  92. A. Alderson, J. Rasburn, S. Ameer-Beg, P.G. Mullarkey, W. Perrie, and K.E. Evans, "An Auxetic Filter: A Tuneable Filter Displaying Enhanced Size Selectivity or Defouling Properties," Industrial & Engineering Chemistry Research, Vol. 39, No. 3, 2000, pp. 654-665. https://doi.org/10.1021/ie990572w
  93. Z. Wang and H. Hu, "Auxetic Materials and Their Potential Applications in Textiles," Textile Research Journal, Vol. 84, No. 15, 2014, pp. 1600-1611. https://doi.org/10.1177/0040517512449051
  94. J. Donoghue, K. Alderson, and K. Evans, "The Fracture Toughness of Composite Laminates with a Negative Poisson's Ratio," Physica Status Solidi (b), Vol. 246, No. 9, 2009, pp. 2011-2017. https://doi.org/10.1002/pssb.200982031
  95. S. Rana, R. Magalhaes, and R. Fangueiro, "Advanced Auxetic Fibrous Structures and Composites for Industrial Applications," (2017).
  96. [online] Available at: https://3dprinting.com/technology/dlp/
  97. [online] Available at: https://carima.com/IMD
  98. [online] Available at: https://www.xyzprinting.com/ko-KR/product/nobel-superfine
  99. [online] Available at: https://ko.3dsystems.com/3d-printers/figure-4-standalone
  100. [online] Available at: https://www.epmi-impression-3d.com/
  101. [online] Available at: https://ko.3dsystems.com/material-finder?technologies%5B0%5D=Selective%20Laser%20Sintering%28SLS%29
  102. [online] Available at: https://formlabs.com/blog/what-is-selective-laser-sintering/
  103. [online] Available at: https://www.materialise.com/en/manufacturing/materials
  104. [online] Available at: https://ko.3dsystems.com/
  105. [online] Available at: https://www.axisproto.com/materials/sla/
  106. [online] Available at: https://uk.3dsystems.com/on-demand-manufacturing/stereolithography-sla/materials
  107. [online] Available at: http://www.uniontech3d.com/product/detail/1703
  108. [online] Available at: https://www.3d-alchemy.co.uk/3d-printing-in-rubber-strong-durable.html
  109. [online] Available at: https://support.formlabs.com/s/article/Using-Flexible-Resin?language=en_US
  110. [online] Available at: https://www.slm-solutions.com