• Title/Summary/Keyword: metallocene

Search Result 84, Processing Time 0.037 seconds

Changes of Characteristic of Terpolymers according to the Chain Length of Incorporated High α-olefins (도입된 High α-olefin의 사슬길이 변화에 따른 삼원공중합체 특성 변화)

  • Jeon, Dong Gyu;Kim, Tae Wan;Kim, Jung Soo;Kim, Hyun Ki;Chang, Young Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.269-275
    • /
    • 2013
  • In this study, we prepared poly(ethylene-ter-1-hexene-ter-divinylbenzene) using various metallocene catalysts with trityl tetrakis(pentafluorophenyl)borate/triisobutylaluminium cocatalysts system. We tried rac-$Et(Ind)_2ZrCl_2$, rac-$SiMe_2(Ind)_2ZrCl_2$, and rac-$SiMe_2(2-Me-Ind)_2ZrCl_2$ to choose optimum metallocene catalyst, comparing with catalytic activity, molecular weight, molecular weight distribution of the terpolymers. To study the effects of chain length of high ${\alpha}$-olefins on the terpolymerization, we synthesized the terpolymers using 1-hexene, 1-octene, 1-decene or 1-dodecene. We characterized chemical composition, thermal properties, and mechanical properties of the terpolymers.

Dehydrocoupling of Bis(silyl)alkylbenzenes to Network Polysilanes, Catalyzed by Group 4 Metallocene Combination

  • Kim, Myoung-Hee;Lee, Jun;Moo, Soo-Yong;Kim, Jong-Hyun;Ko, Young Chun;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Bis(silyl)alkylbenzenes such as bis(1-sila-sec-butyl)benzene (1) and 2-phenyl-1,3-disilapropane (2) were synthesized in high yields by the reduction of the corresponding chlorosilanes with $LiAlH_4$ in diethyl ether. The dehydrocoupling of 1 and 2 was performed using group IV metallocene complexes generated in situ from $Cp_2MCl_2$/Red-Al and $Cp_2MCl_2$/n-BuLi (M = Ti, Hf), producing two phases of polymers. The TGA residue yields of the insoluble polymers were in the range of 64-74%. The molecular weights of the soluble polymers produced ranged from 700 to 5000 ($M_w$ vs polystyrene using GPC) and from 500 to 900 ($M_w$ vs polystyrene using GPC). The dehydropolymerization of 1 and 2 seemed to initially produce a low-molecular-weight polymer, which then underwent an extensive cross-linking reaction of backbone Si-H bonds, leading to an insoluble network polymer.

Effect of Poly(propylene-co-octene) as a Compatibilizer on Mechanical Properties and Weldline Characteristics of Polypropylene/Poly(ethylene-co-octene) Blends (폴리프로필렌/에틸렌-옥텐 공중합체 블렌드의 기계적 성질 및 웰드라인 물성에 미치는 폴리프로필렌-옥텐 공중합체의 영향에 관한 연구)

  • Koo, Hyo-Seon;Son, Young-Gon
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • Effect of poly(propylene-co-octene) as a compatibilizer in toughened polypropylene/ poly(ethylene-co-octene) (EOC) was investigated. The EOCs used were metallocene catalyzed commercial linear low density polyethylene and they are elastomeric materials. The poly(propylene-co-octene) was synthesized by metallocene catalyst in our laboratory to be used as a compatibilizer in PP/EOC blends. PP/EOC blends without compatibilizer shows very low mechanical properties in specimens with weldlines while incorporation of a compatibilizer significantly increases the mechanical properties of specimens with weldlines. However, compatibilized PP/EOC blends does not show increased impact property in a weldline free specimen and it is attributed to low molecular weight of the poly(propylene-co-octene) synthesized in present study. It is expected that the poly(propylene-co-octene) having increased molecular weight provides very good performance as an effective compatibilizer in toughened polypropylene/EOC blends.

Production of Polyethylene Wax via Metallocene Catalysts [(TMDS)$Cp_2$]$ZrCl_2$ and [$(n-Bu)_2Cp_2$]$ZrCl_2$ in the Presence of Hydrogen Gas as a Chain Transfer Reagent (메탈로센 화합물인 [(TMDS)$Cp_2$]$ZrCl_2$ 촉매와 [$(n-Bu)_2Cp_2$]$ZrCl_2$ 촉매를 이용한 고품질의 폴리에틸렌 왁스 제조)

  • Kim, Ji-Yoon;Yoon, Seok-Young;Yang, Young-Do;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.566-572
    • /
    • 2008
  • Polyethylene has been prepared via metallocene catalysts [(TMDS)$Cp_2$]$ZrCl_2$, 1, and [$(n-Bu)_2Cp_2$]$ZrCl_2$, 2, in the presence of hydrogen as a chain transfer reagent. Increase of hydrogen flow to the polymerization reactor resulted in the drop of catalytic activity, reduction of molecular weight of polyethylene, getting narrow of molecular weight distribution of polyethylene, and melting point of the polyethylene wax. It should be noticed that it was possible to control molecular weight down to 1500 and melting temperature to 60 $^\circ$C of polyethylene wax using the catalyst 1 that has been developed by authors as well as the catalyst 2 from Exxon.

Melt Rheology of Ethylene 1-Octene Copolymer Blends Synthesized by Ziegler-Natta and Metallocene Catalysts

  • Kim, Hak-Lim;Dipak Rana;Hanjin Kwag;Soonja Choe
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.34-43
    • /
    • 2000
  • The melt rheology of four binary blends of ethylene 1-octene copolymers (EOCs) which consist of one component by Ziegler-Natta and another by metallocene catalysts, was studied to elucidate miscibility in the melt by using torsion rheometer at 200$\^{C}$ and different shear rates. The four blend systems, designated into the FA+FM, SF+FM, RF+EN, and RF+PL blend, are divided and interpreted based on the melt index (MI), the density and the comonomer contents. The melt viscosity such asη', η", and η$\^$*/ is weight average value if the comonomer contents are similar, otherwise they show different manner. The experimental resole are analyzed based on the Cole-Cole plot of logη' uersus log η", the logarithmic plots of the dynamic storage modulus (G') versus the dynamic loss modulus (G") for various blend compositions, and the melt viscosity of 11', n", and f" as a function of blend compositions. As a cerise-quence, the FA+FM blend is miscible, but the SF+FM, RF+EN, and RF+PL blends are not in the melt. Thus miscibility of the blends studied in this communication is suggested to strongly influence by the comonomer contents rather than the density or the MI.

  • PDF

Preparation of Novel Quaternary Plastomers with Extremely Low Glass Transition Temperature

  • Kim, Jin Hoon;Kim, Jung Soo;Kim, Min Seong;Kim, Ki Bum;Yang, Hong Joo;Ha, Sung Chul;Chang, Young-Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.188-194
    • /
    • 2016
  • In this study, novel quaternary plastomers consisting of ethylene, 1-hexene, high ${\alpha}$-olefin, and divinylbenzene were prepared using Zr metallocene catalyst, borate type cocatalyst, and tri-isobutylaluminium. The molar ratio changes of 1-hexene and high ${\alpha}$-olefin (1-octene, 1-decene, and 1-dodecene) had an effect on the properties of the quaternary plastomers. The structure of the quaternary plastomers was characterized using $^1H$ NMR. Molecular weight properties, crystallinity, and thermal properties of the plastomers were determined by GPC, WAXS, and DMA, respectively. Compared with the terpolymers prepared in our previous study, molecular weight and molecular weight distribution of the quaternary polymers were very similar, whereas glass transition temperature ($T_g$) was very low. Also, hardness and tensile properties of the quaternary plastomers were measured.

Coordination Polymerization of Carbon Double Bond Catalyzed by Organometallic Compounds (유기금속화합물 촉매에 의한 탄소이중결합의 배위중합)

  • Lee Dong-ho
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.321-330
    • /
    • 2005
  • In 1990's the Korean polyolefin industry boomed up through the development of magnificient polymerization catalysts. To understand the general situation of polymerization catalyst R & D, the various experimental results had been summarized for the investigation of not only the supported Ziegler-Natta catalyst used presently in polyolefin industry but also the metallocene catalysts applied for the preparation of special grade of polyolefin. In addition, it had been shown that the new polymeric materials were prepared by new developed catalyst, and the polymer in-situ nanocomposites could be obtained with the application of catalyst heterogenization procedures.

Redistribution/Dehydrocoupling of Endocrine n-$Bu_3SnH$ to Polystannanes Catalyzed by Group 4 Metallocene Complexes

  • Park, Jaeyoung;Kim, Seongsim;Lee, Beomgi;Cheong, Hyeonsook;Noh, Ji Eun;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.79-83
    • /
    • 2012
  • Trialkyltin n-$Bu_3SnH$, an endocrine disruptor, was slowly converted by the catalytic action of group 4 $Cp_2MCl_2$/Red-Al (M = Ti, Zr, Hf) to produce two phases of products: one is an insoluble cross-linked solid, polystannane in 7-23% yield as minor product via redistribution/dehydrocoupling combination process, and the other is an oil, hexabutyldistannane in 69-90% yield as major product via simple dehydrocoupling process. Redistribution/dehydrocoupling process first produced a low-molecular-weight oligostannane possessing partial backbone Sn-H bonds which then underwent an extensive cross-linking reaction of backbone Sn-H bonds, leading to an insoluble polystannane. This is the first exciting example of redistribution/dehydrocoupling of a tertiary hydrostannane catalyzed by early transition metallocenes.