• Title/Summary/Keyword: metallic phase

Search Result 319, Processing Time 0.027 seconds

Synthesis of TiC/Co Composite Powder by the Spray Thermal Conversion of Metallic Salt Solution (금속염용액의 분무열분해에 의한 TiC/Co복합분말 제조)

  • 이길근;문창민;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.228-234
    • /
    • 2003
  • In the present study, the focus is on the synthesis of titanium carbide/cobalt composite powder by the spray thermal conversion process using metallic salt solution as the raw materials. Two types of oxide powders of Ti-Co-O system were prepared by the spray drying of two types of metallic salt solutions : titanium chloride-cobalt nitrate and $TiO_2$ powder-cobalt nitrate solutions. These oxide powders were mixed with carbon black, and then these mixtures were carbothermal reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixtures during carbothermal reduction were analysed using XRD and TG-DTA. In the case of using the titanium chloride-cobalt nitrate solution, it could not be obtained TiC/Co composite powder due to contamination of the impurities during the spray drying of the solution. However, in tile case of using the $TiO_2$ powder-cobalt nitrate scullion, TiC-15 wt. %Co composite powder could be synthesized by the spray thermal conversion process. The synthesized TiC-15 wt. %Co composite powder at 120$0^{\circ}C$ for 2 hours has average particle size of 150 nm.

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

Improved Metal Object Detection Circuits for Wireless Charging System of Electric Vehicles

  • Sunhee Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2209-2221
    • /
    • 2023
  • As the supply of electric vehicles increases, research on wireless charging methods for convenience has been increasing. Because the electric vehicle wireless transmission device is installed on the ground and the electric vehicle battery is installed on the floor of the vehicle, the transmission and reception antennas are approximately 15-30 cm away, and thus strong magnetic fields are exposed during wireless charging. When a metallic foreign object is placed in the magnetic field area, an eddy current is induced to the metallic foreign object, and heat is generated, creating danger of fire and burns. Therefore, this study proposes a method to detect metallic foreign objects in the magnetic field area of a wireless electric vehicle charging system. An active detection-only coil array was used, and an LC resonance circuit was constructed for the frequency of the supply power signal. When a metallic foreign object is inserted into the charging zone, the characteristics of the resonance circuit are broken, and the magnitude and phase of the voltage signal at both ends of the capacitor are changed. It was confirmed that the proposed method has about 1.5 times more change than the method of comparing the voltage magnitude at one node.

Multi-Scale Modelling of a Phase Mixture Model and the Finite Element Method for Nanocrystalline Materials (나노결정 재료의 상혼합모델과 유한요소법을 결합한 멀티스케일 모델링)

  • 윤승채;서민홍;김형섭
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.174-179
    • /
    • 2004
  • The effect of grain refinement on the plastic deformation behaviour of nanocrystalline metallic materials is investigated. A phase mixture model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. For the grain interior phase two concurrent mechanisms are considered: dislocation glide and mass transfer by diffusion. The proposed constitutive model was implemented into a finite element code (DEFORM) using a semicoupled approach. The finite element method was applied to simulating room temperature tensile deformation of Cu down to the nanoscale grain size in order to investigate the pre- and post-necking behaviour.

Synthesis of NiTi Alloy Powder by the Reaction of NiO-TiH2 Mixing Powders (NiO-TiH2 혼합분말의 반응을 이용한 NiTi 합금분말 제조)

  • Jeon, Ki Cheol;Lee, Han-Eol;Yim, Da-Mi;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.266-270
    • /
    • 2015
  • The synthesis of NiTi alloy powders by hydrogen reduction and dehydrogenation process of NiO and $TiH_2$ powder mixtures is investigated. Mixtures of NiO and $TiH_2$ powders are prepared by simple mixing for 1 h or ball milling for 24 h. Simple-mixed mixture shows that fine NiO particles are homogeneously coated on the surface of $TiH_2$ powders, whereas ball milled one exhibits the morphology with mixing of fine NiO and $TiH_2$ particles. Thermogravimetric analysis in hydrogen atmosphere reveals that the NiO and $TiH_2$ phase are changed to metallic Ni and Ti in the temperature range of 260 to $290^{\circ}C$ and 553 to $639^{\circ}C$, respectively. In the simple-mixed powders by heat-up to $700^{\circ}C$, agglomerates with solid particles and solidified liquid phase are observed, and the size of agglomerates is increased at $1000^{\circ}C$. From the XRD analysis, the presence of liquid phase is explained by the formation and melting of $NiTi_2$ inter-metallic compound due to an exothermic reaction between Ni and Ti. The simple-mixed powders, heated to $1000^{\circ}C$, lead to the formation of NiTi phase but additional Ni-, Ti-rich and Ti-oxide phases. In contrast, the microstructure of ball-milled powders is characterized by the neck-grown particles, forming $Ni_3Ti$, Ti-oxide and unreacted Ni phase.

Shearing Phase Lock-in Infrared Thermography for Defects Evaluation of Metallic Materials Specimen (금속재료 시편의 결함평가에 대한 전단위상 Lock-in 적외선열화상 연구)

  • Park, Jeong-Hak;Choi, Man-Yong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • This paper proposes method to evaluate the location and size of the internal defects of metallic specimens by the shearing phase lock-in infrared thermography. Until now, infrared thermography test for metal specimen of STS304 and Cu-Zn were conducted to find the best test conditions. However, In unspecified situation of the form and existence of defects, there was a disadvantage to takes a long time for finding the optimal experimental conditions. The defect detection and evaluation was performed at 60 MHz signal using lock-in and shearing-phase method under limited heating conditions. By shearing-phase distribution method, Defects for the maximum, minimum and zero points were quantitatively detected at the size and location of the subsurface. As results, application of the proposed technique was verified for STS304 and Cu7-Zn3 with artificial defect and factors affected defect evaluation were searched and analyzed.

Change of crystallization and properties of YBCO thin film by phase transition of $CeO_2$ ($CeO_2$의 상전이에 따른 YBCO 박막의 결정성 및 특성의 변화)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1590-1592
    • /
    • 1999
  • We have fabricated good quality superconducting $YBa_2Cu_3O_{7-{\delta}}$ thin films on Hastelloy(Ni-Cr-Mo alloys) with $CeO_2$ buffer layers by in-situ pulsed laser deposition in a multi-target processing chamber. Using one of electrical properties of YBCO superconducting which the resistance approaches to zero dramatically on transition temperature, we have researched to make power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to make films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting layer and non-crystallization of YBCO on amorphous substrate. From early research, two ways-using textured metallic substrate and buffer layer-were proposed to overcome theses difficulties. We have chosen $CeO_2$ as a buffer layer which has cubic structure of $5.41{\AA}$ lattice parameter and only 0.2% of lattice mismatch with $3.82{\AA}$ of a-axis lattice parameter of YBCO on (110) direction of $CeO_2$. In order to enhance the crystallization of YBCO films on metallic substrates we deposited $CeO_2$ buffer layers at varying temperature $700^{\circ}C$ to $800^{\circ}C$ and $O_2$ pressure. By X-ray diffraction, we found that each domination of (200) and (111) orientations were strongly relied upon the deposition temperature in $CeO_2$ layer and the change of the domination of orientation affects the crystallization of YBCO upper layer.

  • PDF

Vaporization and condensation of metallic species in hazardous waste incineration (폐기물 소각시 생성되는 유해 중금속물질의 증발.응축현상에 대한 연구)

  • Song, Yu-Seok;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1983-1993
    • /
    • 1996
  • For selected (pure and compound) metallic species effects of saturation ratio, temperature, particle size and number density on condensation mechanisms are first reviewed. The tendencies for vaporization and condensation differ between metallic species because of the significant differences in their saturation pressures. Then particle pressure of a metal vapor species at incineration temperature is calculated by simplifying waste as a compound of methane, chlorine and small amounts of metals and assuming a thermodynamic equilibrium state. Next the condition is assessed for which supersaturation of combustion gases by the species above the critical level for homogeneous condensation may occur, when the gases contain a large number of pre-existing particles such as entrained ashes. Regardless of the presence of chlorine in the waste, the homogeneous condensation of PbO vapors may occur, depending on number density of the pre-existing particles. However, when chlorine exists in the waste, the homogeneous condensation of PbCl$_2$vapors does not occur, which is similar to the case of Cd and Hg vapors. Thus these highly volatile species, PbCl$_2$, Cd, and Hg, may emit to atmosphere as vapor phase. In general, for reducing the emission of hazardous metallic species into the atmosphere, the number density of pre-existing particles has to be increased. For fixed particle number density, the temperature drop rate must be kept in low if the temperature at which a condensable vapor species emits from a incineration system is fixed, while the temperature drop rate must be kept in high if the residence time for which a condensable species stays in the system is fixed.

Separation of Single-Wall Carbon Nanotubes by Agarose Gel (아가로스 겔을 이용한 단일벽 탄소나노튜브 분리)

  • Yu, Lan;Lim, Yun-Soo;Han, Jong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.272-276
    • /
    • 2011
  • The separation of metallic and semiconducting single-wall carbon nanobubes (SWCNTs) by agarose gel method was carried out in this study. The effect of concentration of agarose, SDS (sodium dodecyl sulfate), and pH in the solution on separation behavior was investigated. With increasing the concentration of agarose in the solution, it showed that the ratio of metallic SWCNTs, which was analyzed from UV-vis-NIR spectroscopy, was increased in the solution phase, while the overall concentration of SWCNTs was decreased. With increasing the concentration of SDS, we could observe that the ratio of metallic SWCNTs was increased due to more affinity between SDS molecules and metallic SWCNT. The highest metallic SWCNTs ratio was reached up to 58.4% when the pH of solution was 8.2.