Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.3.272

Separation of Single-Wall Carbon Nanotubes by Agarose Gel  

Yu, Lan (Department of Materials Science and Engineering, Myongji University)
Lim, Yun-Soo (Department of Materials Science and Engineering, Myongji University)
Han, Jong-Hun (Energy/Nano Materials Research Center, Korea Electronics Technology Institute)
Publication Information
Applied Chemistry for Engineering / v.22, no.3, 2011 , pp. 272-276 More about this Journal
Abstract
The separation of metallic and semiconducting single-wall carbon nanobubes (SWCNTs) by agarose gel method was carried out in this study. The effect of concentration of agarose, SDS (sodium dodecyl sulfate), and pH in the solution on separation behavior was investigated. With increasing the concentration of agarose in the solution, it showed that the ratio of metallic SWCNTs, which was analyzed from UV-vis-NIR spectroscopy, was increased in the solution phase, while the overall concentration of SWCNTs was decreased. With increasing the concentration of SDS, we could observe that the ratio of metallic SWCNTs was increased due to more affinity between SDS molecules and metallic SWCNT. The highest metallic SWCNTs ratio was reached up to 58.4% when the pH of solution was 8.2.
Keywords
agarose gel; separation; SWCNTs; UV-vis-NIR spectroscopy;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. Iijima, Nature, 354, 56 (1991).   DOI
2 R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl Phys Lett., 60, 2204 (1992).   DOI
3 R. B. Weisman and S. M. Bachilo, Nano Lett., 3, 1235 (2003).   DOI   ScienceOn
4 R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002).   DOI   ScienceOn
5 S. J. Lee, H. S. Yoo, and S. K. Joo, J. Electron. Mater., 3, 53 (2007).
6 R. Krupke, F. Hennrich, H. V. Lhoneysen, and M. M. Kappes, Science, 301, 344 (2003).   DOI   ScienceOn
7 K. Kaamaras, M. E. Itkis, H. Hu, B. Zhao, and R. C. Haddon, Science, 310, 1501 (2003).
8 D. Chattopadhyay, I. Galeska, and F. Papadimitrakopoulos, J. Am, Chem. Soc., 125, 3370 (2003)   DOI   ScienceOn
9 Y. Miyata, Y. Maniwa, and H. Kataura, J. Phys. Chem. B., 110, 25 (2006).   DOI   ScienceOn
10 X. Tu, S. Manohr, A. Jagota, and M. Zheng, Nature, 460, 250 (2009).   DOI   ScienceOn
11 T. Tanaka, H. Jin, Y. Miyata, and H. Kataura, Appl. Phys. Express, 1, 114001 (2008).   DOI
12 S. Fujii, T. Tanaka, Y. Miyata, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, and H. Kataura, Appl. Phys. Express, 2, 071601 (2009).   DOI
13 M. S. Jeong, C. C. Byeon, O. H. Cha, H. Jeong, J. H. Han, Y. C. Choi, K. H. An, K. H. Oh, K. K. Kim, and Y. H. Lee, NANO., 3, 101 (2008).   DOI   ScienceOn
14 J. Narayanan, J. Y. Xiong, and X. Y. Liu, J. Phys. : Conf. Ser., 28, 83 (2006)
15 T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, and H. Kataura, Nano Lett., 9, 1497 (2009)   DOI   ScienceOn
16 N. Pernodet, M. Maaloum, and B. Tinland, Electrophoresis, 18, 55 (1997).   DOI   ScienceOn
17 J. Y. Xiong, J. Narayanan, X. Y. Liu, T. K. Chong, S. B. Chen, and T. S. Chung, J. Phys. Chem. B., 109, 5638 (2005).   DOI   ScienceOn
18 H. Liu, Y. Feng, T. Tanaka, Y. Urabe, and H. Kataura, J. Phys. Chem. C., 114, 9270 (2010).
19 M. Taka and S. Nakamura, Carbohydr. Res., 180, 277 (1988).   DOI   ScienceOn