Shearing Phase Lock-in Infrared Thermography for Defects Evaluation of Metallic Materials Specimen

금속재료 시편의 결함평가에 대한 전단위상 Lock-in 적외선열화상 연구

  • Received : 2010.01.22
  • Accepted : 2010.04.16
  • Published : 2010.04.30

Abstract

This paper proposes method to evaluate the location and size of the internal defects of metallic specimens by the shearing phase lock-in infrared thermography. Until now, infrared thermography test for metal specimen of STS304 and Cu-Zn were conducted to find the best test conditions. However, In unspecified situation of the form and existence of defects, there was a disadvantage to takes a long time for finding the optimal experimental conditions. The defect detection and evaluation was performed at 60 MHz signal using lock-in and shearing-phase method under limited heating conditions. By shearing-phase distribution method, Defects for the maximum, minimum and zero points were quantitatively detected at the size and location of the subsurface. As results, application of the proposed technique was verified for STS304 and Cu7-Zn3 with artificial defect and factors affected defect evaluation were searched and analyzed.

본 연구는 전단위상 위상잠금 적외선열화상기술을 이용한 금속재료 시편의 내부결함을 평가하는 방법에 대한 연구 결과이다. 특히, STS304와 Cu-Zn 시편에 대한 비파괴시험 및 평가는 종래에는 적정한 실험 조건하에서 주로 시행됨에 따라 결항의 형태나 존재를 알 수 없는 상황에서는 최적실험조건을 찾는 일은 오랜 시간이 걸리는 단점이 있었다. 본 연구에서는 위상잠금방볍과 전단위상검출방법을 활용하여 60 MHz 신호로 설정된 가열 조건에서 결함의 위치 및 크기를 평가하였다. 전단위상분포는 시편 내부결함의 크기와 위치를 정량적으로 결정하기 위하여 최대, 최소, 영점을 이용하는 방법이다. 연구 결과로써 인공결함을 갖는 STS 304와 Cu7-Zn3 시험편에 대하여 제안된 기법의 적용을 검증하였으며, 결함평가에 영향을 주는 인자를 추출하고 그 영향을 분석하였다.

Keywords

References

  1. G. Gaussorgurs, Infrared Thermography, Translated by S. Chomet, pp. 414-452, Champman & Hall, London (1994)
  2. T. Sakagami and S. Kubo, "Applications of pulse heating thermography and lock-in thermography to quantitative nondestructive evaluations," Infrared Physics & Technology 43, pp. 211-218 (2002) https://doi.org/10.1016/S1350-4495(02)00141-X
  3. G. Busse, D. Wu and W. Karpen, "Thermal wave imaging with phase sensitive modulated thermography," J. Appl. Phys., Vol. 71, No. 8, pp. 3962-3965 (1992) https://doi.org/10.1063/1.351366
  4. V. P. Vavilov, "Infrared and thermal testing: heat transfer," Nondestructive Testing Handbook Series III (3rd Ed.), X. P. V. Maldague, P. O. Moore Ed., ASNT, Columbus, USA, pp. 54-86 (2001)
  5. D. Wu and G. Busse, "Lock-in thermography for nondestructive evaluation of materials," Rev. Gen. Therm., Vol. 37, pp. 693-703 (1998) https://doi.org/10.1016/S0035-3159(98)80047-0
  6. D. P. Almond, and S. K. Lau, "Defect sizing by transient thermography I: An analytical treatment," J. Phys. D: Appl. Phys., Vol. 27, pp. 1063-1069 (1994) https://doi.org/10.1088/0022-3727/27/5/027
  7. G. Busse and A. Rosencwaig, "Subsurface imaging with photoacoustics," Appl. Phys. Lett., Vol 36, No. 10, pp. 815-816 (1980) https://doi.org/10.1063/1.91327
  8. M. Y. Choi, K. S. Kang, J. H. Park, W. T. Kim and K. S. Kim, "Defect sizing and location by lock-in photo-infrared thermography," Journal of the Korean Society for Nondestructive Testing, Vol. 27, No. 4, pp. 321-327 (2007)