• Title/Summary/Keyword: metal-organic chemical vapor deposition

Search Result 314, Processing Time 0.042 seconds

Characterization of Ultra Low-k SiOC(H) Film Deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD)

  • Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2012
  • In this study, deposition of low-dielectric constant SiOC(H) films by conventional plasma-enhanced chemical vapor deposition (PECVD) were investigated through various characterization techniques. The results show that, with an increase in the plasma power density, the relative dielectric constant (k) of the deposited films decreases whereas the refractive index increases. This is mainly due to the incorporation of organic molecules with $CH_3$ group into the Si-O-Si cage structure. It is as confirmed by FT-IR measurements in which the absorption peak at 1,129 $cm^{-1}$ corresponding to Si-O-Si cage structure increases with power plasma density. Electrical characterization reveals that even after fast thermal annealing process, the leakage current density of the deposited films is in the order of $10^{-11}$ A/cm at 1.5 MV/cm. The reliability of the SiOC(H) film is also further characterized by using BTS test.

The performance of the Co gate electrode formed by using selectively chemical vapor deposition coupled with micro-contact printing

  • Yang, Hee-Jung;Lee, Hyun-Min;Lee, Jae-Gab
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1119-1122
    • /
    • 2005
  • A selective deposition of Co thin films for thin film transistor gate electrode has been carried out by the growth with combination of micro-contact printing and metal organic chemical vapor deposition (MOCVD). This results in the elimination of optical lithography process. MOCVD has been employed to selectively deposit Co films on preformed OTS gate pattern by using micro-contact printing (${\mu}CP$). A hydrogenated amorphous silicon TFT with a Co gate selectively formed on SAMs patterned structure exhibited a subthreshold slope of 0.88V/dec, and mobility of $0.35cm^2/V-s$, on/off current ratio of $10^6$, and a threshold voltage of 2.5V, and thus demonstrating the successful application of the novel bottom-up approach into the fabrication of a-Si:H TFTs.

  • PDF

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Growth Behavior of InGaN/GaN Quantum Dots Structure Via Metal-organic Chemical Vapor Deposition (유기금속기상증착법에 의한 InGaN/GaN 양자점 구조의 성장거동)

  • Jung, Woo-Gwang;Jang, Jae-Min;Choi, Seung-Kyu;Kim, Jin-Yeol
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.535-541
    • /
    • 2008
  • Growth behavior of InGaN/GaN self-assembled quantum dots (QDs) was investigated with respect to different growth parameters in low pressure metalorganic chemical vapor deposition. Locally formed examples of three dimensional InGaN islands were confirmed from the surface observation image with increasing indium source ratio and growth time. The InGaN/GaN QDs were formed in Stranski-Krastanow (SK) growth mode by the continuous supply of metalorganic (MO) sources, whereas they were formed in the Volmer-Weber (V-W) growth mode by the periodic interruption of the MO sources. High density InGaN QDs with $1{\sim}2nm$ height and $40{\sim}50nm$ diameter were formed by the S-K growth mode. Dome shape InGaN dots with $200{\sim}400nm$ diameter were formed by the V-W growth mode. InN content in InGaN QDs was estimated to be reduced with the increase of growth temperature. A strong peak between 420-460 nm (2.96-2.70 eV) was observed for the InGaN QDs grown by S-K growth mode in photoluminescence spectrum together with the GaN buffer layer peak at 362.2 nm (3.41 eV).

The Characterization of ZnO Hybrid Structure Grown by Metal-organic Chemical Vapor Deposition

  • Kim, A-Yeong;Jang, Sam-Seok;Lee, Do-Han;Im, So-Yeong;Byeon, Dong-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • The growth of three-dimensional ZnO hybrid structures by metal-organic chemical vapor deposition was controlled through their growth pressure. Vertically aligned ZnO nanorods were grown on c-plane sapphire substrate at $600^{\circ}C$ and 400 Torr. ZnO film was then formed in-situ on the ZnO nanorods at $600^{\circ}C$ and 10 Torr. High-resolution X-ray diffraction and transmission electron microscopy measurements showed that the ZnO film on the nanorods/sapphire grew epitaxially, and that the ZnO film/nanorods hybrid structures had well-ordered wurtzite structures. The hybrid ZnO structure was shown to be about 5 ${\mu}m$ by field-emission scanning electron microscopy. The hybrid structure showed better crystalline quality than mono-layer film on sapphire substrate. Consequently, purpose of this work is developing high quality hybrid epi-growth technology using nano structure. These structures have potential applicability as nanobuilding blocks in nanodevices.

  • PDF

A Study of Properties of GaN and LED Grown using In-situ SiN Mask (In-situ SiN 박막을 이용하여 성장한 GaN 박막 및 LED 소자 특성 연구)

  • Kim, Deok-Kyu;Yoo, In-Sung;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.945-949
    • /
    • 2005
  • We have grown GaN layers with in-situ SiN mask by metal organic chemical vapor deposition (MOCVD) and study the physical properties of the GaN layer. We have also fabricate PN junction light emitting diode (LED) to investigate the effect of the SiN mask on its optical property By inserting a SiN mask, (102) the full width at half maximum (FWHM) decreased from 480 arcsec to 409 arcsec and threading dislocation (TD) density decreased from $3.21{\times}10^9\;cm^{-2}$ to $9.7{\times}10^8\;cm^{-2}$. The output power of the LED with a SiN mask increased from 198 mcd to 392 mcd at 20 mA. We have thus shown that the SiN mask improved significantly the physical and optical properties of the GaN layer.

Enhancement in the light extraction efficiency of 405 nm light-emitting diodes by adoption of a Ti-Al reflection layer (Ti-Al 반사막을 이용한 405 nm LED의 광추출 효율 향상)

  • Kim, C.Y.;Kwon, S.R.;Lee, D.H.;Noh, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.211-214
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) of a 405 nm wavelength have been fabricated on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). In order to reflect the photons, which are generated in the InGaN active region and emitted to the backside, to the front surface, a reflection layer was deposited onto the back of the substrate. Aluminum was used as the reflection layer and Al was deposited on the sample followed by Ti evaporation for firm adhesion of the reflection layer to the substrate. The light extraction efficiency was enhanced 52 % by adoption of the Ti-Al reflection layer.

Growth and structural characterization of ZnO thin film on silicon substrate by MOCVD method (실리콘 기판상의 ZnO 박막의 성장 및 구조적 특성)

  • 김광식;이정호;김현우
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.2
    • /
    • pp.97-102
    • /
    • 2002
  • Highly-oriented ZnO thin films has been successfully deposited on Si(100) by metal organic chemical vapor deposition(MOCVD) at $250^{\circ}C$~$400^{\circ}C$ We report on the structural properties of ZnO thin film at various temperatures and at various ratios of the he and $O_2$ gas flow rates. The crystallinity of the thin films was improved and the surface smoothness decreased with the increase of the growth temperature. In x-ray diffraction analysis with respect to ZnO(0002) peak, the full width at half maximum (FWHM) of $0.4^{\circ}$ was achieved at $400^{\circ}C$.