• 제목/요약/키워드: metal tolerance

검색결과 202건 처리시간 0.025초

무 유식물에서의 니켈내성과 히스티딘의 작용 (Nickel Tolerance and the Complexing Role of Histidine in Raphanus sativus)

  • 김태윤;홍정희
    • 한국환경과학회지
    • /
    • 제13권8호
    • /
    • pp.711-719
    • /
    • 2004
  • The effect of nickel (Ni) on growth and some tolerance strategies with regard to heavy metal tolerance mechanism was investigated in radish (Raphanus sativus) seedlings. The protective effect of histidine on nickel stress conditions was also monitored. The seedling growth decreased with an increase in metal concentrations. The inhibitory effect was more pronounced in the root elongation than in the shoot elongation. Increasing Ni supply showed a progressive increase of Ni concentrations in the roots and shoots. Ni content was higher in the shoots than in the roots. In the presence of nickel, radish exhibited an antioxidative defense mechanism, as evidenced by the elevated malondialdehyde(MDA), showing that nickel is an efficient inducer of lipid peroxidation. Exposure of radish to elevated concentrations of nickel was accompanied by an increase in the proline content. Supplemental histidine in the presence of Ni ameliorated metal-induced growth inhibition and lipid peroxidation. Combinations of Ni and histidine resulted in a significant decline in proline content compared with Ni stress alone, indicating that histidine may provide protection against the adverse effect of Ni stress. From the results it is suggested that histidine is an efficient chelator by complexing metal ion within the plant and may playa role in nickel tolerance implicated in metal detoxification.

Alteration of macronutrients, metal translocation and bioaccumulation as potential indicators of nickel tolerance in three Vigna species

  • Ishtiaq, Shabnam;Mahmood, Seema;Athar, Mohammad
    • Advances in environmental research
    • /
    • 제3권1호
    • /
    • pp.71-86
    • /
    • 2014
  • Macronutrients ($Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$), yield and yield components, bioaccumulation and translocation of metal in plant parts of three Vigna species (V. cylindrica, V. mungo, V. radiata) were evaluated at 0, 50, 100 and $150mgkg^{-1}$ soil of Nickel (Ni). A marked inhibition (p < 0.001) in the distribution of various macronutrients was noticed in these Vigna species except for $Mg^{2+}$ content of the shoot and leaves. Similarly, all species retained more $Ca^{2+}$ in their roots (p < 0.05) as compared to the aerial tissues. Ni induced a drastic decline (p < 0.001) for various yield and yield attributes except for 100 seed weight. Toxicity and accumulation of Ni in plant tissues considerably increased in a concentration dependent manner. Vigna species signify an exclusion approach for Ni tolerance as both bioaccumulation factor (BF) and translocation factor (TF) were less than 1.0. The Ni content of plants being root > shoot > leaves > seeds. Scoring for percentage stimulation and inhibition (respective to control) at varying levels of Ni revealed tolerance of the species in an order of V. radiata > V. cylindrica > V. mungo. The acquisition of Ni tolerance in V. radiata seems to occur through an integrated mechanism of metal tolerance that includes sustainable macronutrients uptake, stronger roots due to greater deposition of $Ca^{2+}$in the roots, restricted transfer of Ni to above ground tissues and seeds as well as exclusion capacity of the roots to bind appreciable amount of metal to them. Thus, metal tolerant potential of V. radiata could be of great significance to remediate metal contaminated soil owing lesser impact of Ni on macro-nutrients, hence the yield.

토양 내 카드늄, 납, 아연 농도에 따른 내음성 바위취(Saxifraga stolonifera)의 중금속 내성 평가 (Evaluation of the Heavy Metal Tolerance of Saxifraga stolonifera, Shade Groundcover Plant, to Different Concentrations of Cd, Pb and Zn in Soil)

  • 주진희;윤용한
    • 한국환경과학회지
    • /
    • 제19권5호
    • /
    • pp.585-590
    • /
    • 2010
  • This study attempted to facilitate various groundcover plants, related to phytoremediation material, and advance shade plants with a heavy metal tolerance to contaminated soil in an urban shade space. Saxifraga stolonifera, which has commonly been used a landscape shade plants, was evaluated to determine its heavy metal tolerance to different concentrations(Control, $100mg{\cdot}kg^{-1}$, $250mg{\cdot}kg^{-1}$ and $500mg{\cdot}kg^{-1}$ treatment) of Cd, Pb and Zn in soil. The growth of Saxifraga stolonifera showed no significant tendency after the initial transplantation, but showed distinct changes with the respective treatment heavy metal types and concentrations over time. Especially, severe chlorosis, with more yellowish green leaves, was observed, with inhibition at Cd concentrations greater than $100mg{\cdot}kg^{-1}$. Conversely, no external symptoms or growth retardation were observed with Pb and Zn concentrations less than $500mg{\cdot}kg^{-1}$. Therefore, Saxifraga stolonifera can be applied as a long term phytoremediation species in soil contaminated with low concentrations of heavy metal in urban shade spaces.

금속전달 유전자(MTP1)의 과발현 애기장대에서 발현 위치에 따른 내성 증가 연구 (Overexpression of the Metal Transport Protein1 gene (MTP1) in Arabidopsis Increased tolerance by expression site)

  • 김동균
    • 문화기술의 융합
    • /
    • 제5권3호
    • /
    • pp.327-332
    • /
    • 2019
  • 현대 과학자들은 식물정화공정과 같은 새로운 기술로 중금속을 제거하려고 한다. 이런 최첨단 기술 중 하나는 토양의 특정 중금속을 제거하는 형질 전환 식물을 개발하는 것이다. 본 연구자는 T. goingense Metal Transport Protein 1 유전자와 TgMTP1 : GFP 유전자를 발현하는 형질 전환 벡터를 구축했다. 형질전환체 식물을 선택하여 형질 전환 된 유전자를 애기 장대 게놈에서 확인했다. 발현은 Arabidopsis 세포, 조직 및 기관의 여러 부분에서 확인되었다. Arabidopsis thaliana에서 TgMTP1 과발현하는 식물에 중금속이온이 처리되었을 때 형질 전환 식물체는 비 형질 전환 체보다 중금속 내성이 높았다. 추가 연구를 위해 4 (Zn, Ni, Co, Cd.)가지 중금속에 대한 내성이 향상된 형질 전환 식물을 선택했다. 선택된 T3 TgMTP1 과다 발현 애기 장대 식물은 중금속에 내성이 증가된다. 이 식물은 액포 내에 중금속을 축적하고 동시에 원형질막에 발현되는 MTP1 유전자의 발현을 특징으로 한다. 결론적으로, 이러한 식물은 식물 정화 응용 분야 및 내성이 증가 된 식물로 사용될 수 있다.

Heavy Metal Biosorption and its Significance to Metal Tolerance if Streptomycetes

  • Park, Jae-young;Kim, Jae-heon
    • Journal of Microbiology
    • /
    • 제40권1호
    • /
    • pp.51-54
    • /
    • 2002
  • Heavy metal adsorptions of four streptomycetes were compared with each other, Among the test strains, Streptomyces viridochromogenes showed the most efficient metal binding activity, which was carried out by cell wall as well as freeze-dried mycelium. An order of adsorption potential (zinc > copper > lead > cadmium) was observed in single metal reactions, whereas this adsorption order was disturbed in mixed-metal reactions. The metal adsorption reactions were very fast, pH dependent and culture age-independen, suggestive of a physico-chemical reaction between cell wall components and heavy metal ions. The metal tolerant stains presented the weakest adsorbing activity, indicating that the metal biosorption was not the basis of the metal tolerance.

고려인삼이 Fusarium oxysporum에 의한 중금속 수은의 해독작용에 미치는 영향 (Effect of Korea Ginseng Root on Detoxification of Heavy Metal, Mercury by Fusarium oxysporum)

  • Kim, Young-Ho;Park, Eun-Kyung;Park, Kyu-jin
    • Journal of Ginseng Research
    • /
    • 제16권1호
    • /
    • pp.24-30
    • /
    • 1992
  • Extracts of Panax ginseng root significantly induced tolerance of Fusarium oxysporum to heavy metal, mecury, as the fungal mycelial growth was less inhibited by mercury chloride on potato dextrose medium(PDA) amended with ginseng root than on the PDA with no ginseng amendment. The most favorable concentration of ginseng root powder in detoxification of mercury chloride was 1%. The induced tolerance of F. oxysporum to mercury chloride appeared to be rather due to absorption of ginseng components, and was not related to stimulation of mycelial growth of the fungus per so by ginseng treatment. Ginseng components responsible for inducing tolerance of the fungus to mercury were involved in the water fraction of the ginseng root extract, although the water fraction had no effect on enhancement of the mycelial growth on the medium without mercury chloride. The hexane fraction of ginseng root extract, by which the mycelial growth was stimulated, was not related to the inducement of the tolerance to mercury chloride. However, more tolerance to mercury chloride was noted in PDA with both the water and hexane fractions combined than with either of the two fractions. Six-year-old ginseng roots were more effective in detoxification of mercury chloride than 4-year-old ginsng roots, and American ginseng (P quinquifolium) had no or little effect on inducing tolerance of the fungus to mercury chloride. This method may be used to screen other natural materials for test in the detoxification of mercury chloride.

  • PDF

Heavy Metal Tolerance of Novel Papiliotrema Yeast Isolated from Vietnamese Mangosteen

  • Nguyen, Kim Cuc Thi;Nguyen, Phu Van;Truong, Hai Thi Hong
    • Mycobiology
    • /
    • 제48권4호
    • /
    • pp.296-303
    • /
    • 2020
  • Three yeast strains (Hue-1, Hue-8, and Hue-19) with strong heavy metal tolerance were isolated from mangosteen from Hue city, Vietnam. They exhibited identical phenotype and phylogeny. Sequence analysis of the D1/D2 region of the LSU rRNA gene and the internal transcribed spacer (ITS) region demonstrated that the closest relative of these strains is Papiliotrema sp. with 2.12% and 3.55-3.7% divergence in the D1/D2 domain, and ITS domain, respectively. Based on the physiological, biochemical, and molecular data, the three strains belong to a novel species of Papiliotrema genus, for which the name Papiliotrema huenov sp. nov. is proposed. These strains are highly tolerant of heavy metals compared to other yeasts, being able to grow in the presence of 2 mM Pb (II), 2 mM Cd (II), and up to 5 mM Ni (II), but no growth was observed in the presence of 1 mM As (III).

중금속 및 디젤 오염 토양에서 분리한 중금속 내성 식물 생장 촉진 근권세균의 특성 (Characterization of Heavy Metal Tolerant and Plant Growth-Promoting Rhizobacteria Isolated from Soil Contaminated with Heavy Metal and Diesel)

  • 이수연;이윤영;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제49권3호
    • /
    • pp.413-424
    • /
    • 2021
  • 식물과 근권미생물을 이용해 토양 오염물질을 제거하는 rhizoremediation의 효율을 높이기 위해서는 오염물질을 제거함과 동시에 식물 생장을 촉진시키는 미생물 자원 개발이 필요하다. 본 연구에서는 중금속 및 유류 복합 오염 토양에서 서식하고 있는 옥수수와 톨페스큐의 근권으로부터 중금속(구리, 카드뮴 및 납) 내성을 가진 근권세균을 순수분리하였고, 식물 생장 촉진능, 중금속 내성능 및 디젤 분해능을 정성적으로 평가하였다. 그 결과 중금속 내성, 식물 생장 촉진 활성 및 디젤 분해능을 가진 6종의 균주를 분리하였다. 옥수수 근권에서 분리한 CuM5와 CdM2 균주는 Cupriavidus sp.로 동정되었다. 톨페스큐 근권에서 분리한 CuT6, CdT2, CdT5 및 PbT3는 각각 Fulvimonas soli, Cupriavidus sp., Novosphingonium sp. 및 Bacillus sp.로 동정되었다. Cupriavidus sp. CuM5와 CdM2는 중금속 내성과 디젤 분해능은 상대적으로 낮았으나, 식물 생장 촉진능이 상대적으로 우수하였다. 6종 중에서 디젤 분해능이 가장 우수한 균주는 Cupriavidus sp. CdT2와 Bacillus sp. PbT3이었다. 특히, Bacillus sp. PbT3는 3종의 중금속에 대해 상대적으로 우수한 내성을 가졌고 식물 생장 촉진능도 우수하였다. 본 연구에서 분리한 근권세균은 유류와 중금속 복합 오염 토양을 정화시키며 식물 생장을 촉진시키는 새로운 미생물 자원으로 활용 가능하다.

Serratia marcescens LSY4 중금속 내성주를 이용한 BOD센서의 감응도 (Sensitivity of BOD Sensor with Heavy Metal Tolerant Serratia marcescens LSY4)

  • 김말남;이선영
    • 환경생물
    • /
    • 제22권3호
    • /
    • pp.394-399
    • /
    • 2004
  • S. marcescens LSY4가 충전된 BOD센서를 제작하여 표준오염물질을 포함한 수용액의 BOD를 측정하였다. 배양시간이 9∼16시간일 때에는 배양시간에 따른 BOD센서의 감응도에 큰 차이를 나타내지 않았으며, 균체량도 0.22~0.75mg $cm^{-2}$의 범위에서는 거의 동일한 센서의 감응도를 나타내었다. 수용액의 pH가 4~9사이로 변화할 경우 센서의 감응도가 가역적으로 변화하였으나 수용액이 더 산성이거나 더 염기성이 되면 센서의 감응도가 비가역적으로 저하되었다. 수용액에 중금속이온이 첨가되면 센서의 감응도가 감소하였으며, $Zn^{2+}$$Cd^{2+}$보다 $Cu^{2+}$혹은 $Ag^+$가 첨가되었을 때 센서의 감응도가 더 급격히 감소하였다. 중금속에 대한 내성이 유도된 균체를 충전하였을 때 중금속이온의 첨가에 따른 센서의 감응도 감소가 크게 완화되었으며, 이런 효과는 $Cd^{2+}$내성주보다 $Cu^{2+}$내성주에서 더 현저하였다.

톨러런스기반 플레이트 접합 장치를 사용한 고중량 RC보의 설치 성능 (Erection Capability of Heavy Precast Frames with Metal Plates using Wet Concrete for Tolerance)

  • 홍원기;응엔 반 티엔;응엔 만 컹;쿤디마나 에릭
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.12-13
    • /
    • 2021
  • Methods for the manufacture, erection, and assembly of heavy frame modules were proposed. Interferences among precast members were prevented by using bolted metal plates for dry precast beam-to-column joints during assembly with a clearance for tolerance implementing grouted concrete filler plates instead of metal filler plates. Clearances for tolerances were provided to avoid conflictions among components during erection phases. These gaps were, then, grouted by high-strength mortar. The constructability of new connections of a beam-to-column joint using bolted metal plates for precast structures was examined using a full-scale assembly test in which practical observations indicated that members could be aligned and placed accurately in both horizontal and vertical directions, leading to a fast and convenient assembling. Bolt holes of the endplate were properly aligned using couplers with 30 mm fastened length embedded in the columns. The assembly test demonstrated the erection safety and structural stability of the proposed joints that were without filler plates when they were subjected to heavy loads at the time of their erection. The facile and rapid assembly of precast beam-to-column connections with a 30 mm tolerance was observed. The proposed assembly method is rapid, sustainable, and resilient, replacing the conventional methods of concrete frame construction, offering a connection that can be used in constructing infrastructure, such as buildings and pipe-rack frames.

  • PDF