• 제목/요약/키워드: metal stability

검색결과 1,266건 처리시간 0.033초

A New-Generation Fluorescent-Based Metal Sensor - iLOV Protein

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Rhee, Jin-Kyu;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.503-510
    • /
    • 2015
  • The iLOV protein belongs to a family of blue-light photoreceptor proteins containing a light-oxygen-voltage sensing domain with a noncovalently bound flavin mononucleotide (FMN) as its chromophore. Owing to advantages such as its small size, oxygen-independent nature, and pH stability, iLOV is an ideal candidate over other reporter fluorescent proteins such as GFP and DsRed. Here, for the first time, we describe the feasibility of applying LOV domain-based fluorescent iLOV as a metal sensor by measuring the fluorescence quenching of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the inherent copper sensing property of the iLOV protein and identified the possible amino acids responsible for metal binding. The fluorescence quenching upon exposure to Cu2+ was highly sensitive and exhibited reversibility upon the addition of the metal chelator EDTA. The copper binding constant was found to be 4.72 ± 0.84 µM. In addition, Cu2+-bound iLOV showed high fluorescence quenching at near physiological pH. Further computational analysis yielded a better insight into understanding the possible amino acids responsible for Cu2+ binding with the iLOV protein.

Recent Trends in the Biosorption of Heavy Metals: A Review

  • Sag, Yesim;Kutsal, Tulin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권6호
    • /
    • pp.376-385
    • /
    • 2001
  • Considerable attention has been focused in recent years upon the field of biosorption for the removal of metal ions from aqeous effluents. Compared to other technologies, the advan-tages of biosortption are the high purity of the treated waste water and the cheap raw material. Really, the first major challenge for the biosorption field is to select the most promising types of biomass. Abundant biomass types either generated as a waste by-product of large-scale industrial fermentations particularly fungi or certain metal-binding seaweeds have gained importance in re-cent years due to their natural occurrence, low cost and, of course good performance in metal biosorption. Industrial solutions commonly contain multimetal systems or several organic and in organic substances that form complexes with metals at relatively high stability forming a very complex environment. When several components are present, interference and competition phe-nomena for sorption sites occur and lead to a more complex mathematical formulation of the process. The most optimal configuration for continuous flow-biosorption seems to the packed-bed column which gets gradually from the feed to the solution exit end. Owing to the com-petitive ion exchange taking place in the column, one or more of the metals present even at trace levels may overshot the acceptable limit in the column effluent before the breakthrough point of the trargeted metal. Occurrence of 'overshoot's and impact on havey metal removal has not been analyzed enough. New trends in biosorption are discussed in this review.

  • PDF

Synthesis of Polystyrene Nanoparticles with Monodisperse Size Distribution and Positive Surface Charge Using Metal Stearates

  • Kim, Mi-Sun;Kim, Seok-Ki;Lee, Jun-Young;Cho, Seung-Hyun;Lee, Ki-Hoon;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.178-181
    • /
    • 2008
  • Polystyrene (PS) nanospheres with a monodisperse size distribution, positive surface charge and high molecular weight were successfully synthesized using various types of metal stearates in an aqueous NaOH medium. The diameter of the PS nanospheres was controlled from 80 to 450 nm by changing the type of metal stearate. It was also found that controlling the NaOH concentration in solution was important for producing monodisperse PS nanoparticles. The nanospheres prepared with zinc stearate possessed a positive surface charge of 60 to 80 mV, confirming that PS particles were functionalized with metal stearates. It is believed that the metal stearates provide PS particles with not only colloidal stability but also a positive surface charge.

착화제 첨가에 따른 웨이퍼 세정 용액 특성 분석 및 금속 용해 거동 (Analysis of Wafer Cleaning Solution Characteristics and Metal Dissolution Behavior according to the Addition of Chelating Agent)

  • 김명석;류근혁;이근재
    • 한국분말재료학회지
    • /
    • 제28권1호
    • /
    • pp.25-30
    • /
    • 2021
  • The surface of silicon dummy wafers is contaminated with metallic impurities owing to the reaction with and adhesion of chemicals during the oxidation process. These metallic impurities negatively affect the device performance, reliability, and yield. To solve this problem, a wafer-cleaning process that removes metallic impurities is essential. RCA (Radio Corporation of America) cleaning is commonly used, but there are problems such as increased surface roughness and formation of metal hydroxides. Herein, we attempt to use a chelating agent (EDTA) to reduce the surface roughness, improve the stability of cleaning solutions, and prevent the re-adsorption of impurities. The bonding between the cleaning solution and metal powder is analyzed by referring to the Pourbaix diagram. The changes in the ionic conductivity, H2O2 decomposition behavior, and degree of dissolution are checked with a conductivity meter, and the changes in the absorbance and particle size before and after the reaction are confirmed by ultraviolet-visible spectroscopy (UV-vis) and dynamic light scattering (DLS) analyses. Thus, the addition of a chelating agent prevents the decomposition of H2O2 and improves the life of the silicon wafer cleaning solution, allowing it to react smoothly with metallic impurities.

열산화 방법으로 제작한 $WO_3$박막의 안정성 연구 (The stability of $WO_3$ thin film prepared by thermal oxidation method)

  • 조형호;임원택;안일신;이창효
    • 한국진공학회지
    • /
    • 제8권2호
    • /
    • pp.136-140
    • /
    • 1999
  • The stability and response time of $WO_3$ thin films for EC device are critical problems being solved. Those are affected by the species of electrolyte, preparation conditions and fabricating methods of specimen. In this paper, we compared the stabilities of three kinds of tungsten oxide film in electrolyte. Each of three films was prepared by different manufacturing conditions, that is, one is a thermal oxidation film of tungsten metal deposited on pure glass substrate, another is a $WO_3$ film made on ITO glass directly, the other is a thermally oxidized film on tungsten plate. It was observed that thermally oxidized $WO_3$ films has a remarkable stability (the lifetime was above $10^6$ cycle). From these results, we found that the stability was closely related to the stoichiometric bonding between tungsten and oxygen atoms in addition to crystallinity and density of film.

  • PDF

지르코늄-피리치온 착물에 관한 연구 (Studies on the Zr-Pyrithione Complex)

  • 권중무;이계주
    • Journal of Pharmaceutical Investigation
    • /
    • 제20권3호
    • /
    • pp.145-152
    • /
    • 1990
  • Zirconium pyrithione complex was prepared by reaction of sodium-pyrithione solution and zirconyl chloride solution. The physico-chemical properties of the complex was examined by means of IR, XRD, DSC and NMR. And the stability of Zr-complex was investigated on the basis of accelerated stability analysis under conditions of temp. elevation, UV radiation and pH dependence. The result indicates that the ratio of the ligand to metal in Zr-pyrithione complex was determined 4:1, and its stability constant was $4.643{\times}10^4$. The rate order of decomposition of the complex was apparent first-order reaction of which rate constant and the decomposition rate was not only accelerated by effect of heat and UV radiation but was catalyzed by specific acid-base catalysis considered the pH dependence for the hydrolysis of the complex and the suspension was most stable over the range pH 4-8 indicating that solvent catalysis is the primary made of reaction in this region.

  • PDF

실리콘 산화막에 대한 Ta-Mo 합금 게이트의 열적 안정성 (Thermal Stability of Ta-Mo Alloy Film on Silicon Dioxide)

  • 노영진;이충근;홍신남
    • 한국전기전자재료학회논문지
    • /
    • 제17권4호
    • /
    • pp.361-366
    • /
    • 2004
  • The interface stability of Ta-Mo alloy film on SiO$_2$ was investigated. Ta-Mo alloy films were formed by co-sputtering method, and the alloy composition was varied by controlling Ta and Mo sputtering power, When the atomic composition of Ta was about 91%, the measured work function was 4.24 eV that is suitable for NMOS gate. To identify interface stability between Ta-Mo alloy film and SiO$_2$, C-V and XRD measurements were performed on the samples annealed with rapid thermal processor between $600^{\circ}C$ and 90$0^{\circ}C$. Even after 90$0^{\circ}C$ rapid thermal annealing, excellent interface stability and electrical properties were observed. Also, thermodynamic analysis was studied to compare with experimental results.

Control the stability of small-scale non-uniform structures via neural networks applied to partial differential equations

  • Xiaoqi Sun
    • Advances in nano research
    • /
    • 제17권4호
    • /
    • pp.351-367
    • /
    • 2024
  • This research uses a numerical technique and a neural network process to investigate the stability management of non-uniform cylindrical constructions with varying sizes. The non-uniform or truncated conical shapes vary in axial length. This complicated geometry results in partial differential equations in the mathematical explanation of stability performance. Furthermore, material distributions vary in the radial direction in functionally graded materials such as metal and ceramic. The governing equations are obtained from beam theory using the energy technique and non-classical size-dependent theory, respectively. These equations are then solved using both a numerical and neural network methodology. This research can potentially be utilized in nanotechnology to build and evaluate size-dependent non-uniform cylindrical structures. As a consequence, it will help to develop sophisticated nanoscale materials and architectures.

Precursor Chemistry for Atomic Layer Deposition

  • Chung, Taek-Mo;Kim, Chang Gyoun;Park, Bo Keun;Jeon, Dong Ju;An, Ki-Seok;Lee, Sun Sook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.76.2-76.2
    • /
    • 2013
  • Advanced electronic application areas have strongly required new materials due to the continuous shrinking dimensions of their devices. Specially, the development and use of metal precursors for atomic layer deposition has been extensively focused on application to electronic devices. Thus the systematic design and synthesis of metal compounds with relevant chemical and physical properties, such as stability, volatility, and resistance to air and moisture are very important in the vacuum deposition fields. In many case, organic ligands for metal precursors are especially focused in the related research areas because the large scale synthesis of the metal complexes with excellent properties exclusively depends on the potential usefulness of the ligands. It is recommended for metal complexes to be in monomeric forms because mononuclear complexes generally show high vapor pressures comparing with their oligomeric structure such as dimer and trimer. Simple metal alkoxides complexes are involatile except several examples such as Ti(OiPr)4, Si(OEt)4, and Hf(OtBu)4. Thus the coordinated atom of alkoxide ligands should be crowded in its own environment with some substituents by prohibiting the coordinated atoms from bonding to another metal through oxygen-bridging configuration. Alkoxide ligands containing donor-functionalized group such as amino and alkoxy which can induce the increasing of the coordinative saturation of the metal complexes and the decreasing of the intermolecular interaction between or among the metal compounds. In this presentation, we will discuss the development of metal compounds which adopted donor-functionalized alkoxide ligands derived from their alcohols for electronic application. Some recent results on ALD using metal precursors such as tin, nickel, ruthenium, and tungsten developed in our group will be disclosed.

  • PDF

여러자리 질소-산소계 시프염기 리간드와 전이금속착물의 합성 및 특성 (Synthesis and Properties of Polydentate Schiff Base Ligands having $N_nO_2$ (n=3~5) Donor Atoms and their Transition Metal Complexes)

  • 김선덕;신윤열;박성우
    • 분석과학
    • /
    • 제11권5호
    • /
    • pp.366-373
    • /
    • 1998
  • 여러자리 시프염기인 BSDT(1,9-bis(2-hydroxyphenyl)-2,5,8-triaza-1,8-nonadiene), BSTT(1,12-bis(2-hydroxyphenyl)-2,5,8,11-tetraaza-1,11-dodecadiene)와 BSTP(1,15-bis(2-hydroxyphenyl)2,5,8,11,14-pentaaza-1,14-pentadodecadiene)를 합성하여 전위차적정법으로 산해리 상수값을 구하고, DMSO 용매에서 이들 리간드들과 구리(II), 니켈(II), 및 아연(II)등의 전이금속과의 안정도 상수값을 폴라로그래피를 이용하여 구하였다. 이때 금속과 리간드는 1:1착물을 형성하였고, 안정도 상수값은 금속으로서는 Cu(II)>Ni(II)>Zn(II) 순서로, 리간드로서는 BSTP>BSTT>BSDT 순서로 나타남으로서 주개 원자수의 증가에 의존한다는 사실을 알았다. 엔탈피와 엔트로피는 모두 음의 값을 나타내었는데 흡열반응으로서 금속이온과 리간드가 매우 강하게 결합하고 있음을 알 수 있고 극성을 가지는 금속착물이 생성되어 용매인 DMSO와 아주 강한 상호작용을 함으로써 큰 음의 엔트로피 값을 가진 것으로 생각된다.

  • PDF