• Title/Summary/Keyword: metal salt

Search Result 451, Processing Time 0.029 seconds

Electron Beam Mediated Simple Synthetic Route to Preparing Layered Zinc Hydroxide

  • Bae, Hyo-Sun;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1949-1954
    • /
    • 2012
  • We have developed a novel and eco-friendly synthetic route for the preparation of a two-dimensional layered zinc hydroxide with intercalated nitrate anions. The layered zinc hydroxide nitrate, called 'zinc basic salt', was, in general, successfully synthesized, using an electron beam irradiation technique. The 2-propanol solutions containing hydrated zinc nitrate were directly irradiated with an electron-beam at room temperature, under atmospheric conditions, without stabilizers or base molecules. Under electron beam irradiation, the reactive OH radicals were generated by radiolysis of water molecules in precursor metal salts. After further radiolytic processes, the hydroxyl anions might be formed by the reaction of solvated electrons and the OH radical. Finally, the $Zn_5(OH)_8(NO_3)_2{\cdot}2H_2O$ was precipitated by the reaction of zinc cation and hydroxyl anions. Structure and morphology of obtained compounds were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). The chemical components of the products were determined by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA). The thermal behavior of products was studied by thermogravimetric (TG) and differential thermal analysis (DTA).

Electrochemical Determination of Glucose Concentration Contained in Salt Solution (소금용액에 포함된 글루코오스 농도의 전기화학적 측정)

  • 김영한
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.475-479
    • /
    • 2000
  • A possibility of the implementation of a quartz crystal sensor to the determination of chemical oxygen demand is examined by checking the electrochemical behavior of the sensor in a glucose solution. Since the surface of a quartz crystal has to be oxidized, a relatively active metal is coated on the surface of a usual 9 MHz AT-cut crystal. The electrochemical behavior is investigated by measuring the changes of current, resonant frequency and resonant resistance while a constant potential is applied. The crystal is installed in a specially designed container, and a quartz crystal analyzer is utilized to measure the frequency and resistance simultaneously. The variations of the measurements are examined at different concentrations of glucose solution, and a proper relation between the concentrations of glucose solution, and a proper relation between the concentration and the measurements is analyzed. As a result, it is found that a linear relation between the concentration of less than 900 ppm and the peak current when a constant potential of -180 mV (SSCE) is applied. The relation can be utilized for the determination of glucose concentration in sea water, and considering a direct relation between gluose concentration and chemical oxygen demand tells a possibility of the measurement of chemical oxygen demand using quartz crystal oscillators.

  • PDF

Electrorefining of CuZr Alloy Using Ba2ZrF8-LiF Electrolyte

  • Lee, Seong Hun;Choi, Jeong Hun;Yoo, Bung Uk;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.672-678
    • /
    • 2017
  • In the production of zirconium cladding tube, a pickling acid solution is used to remove surface contaminants, which generates tons of pickling acid waste. The waste pickling solution is a valuable resource of Hf-free Zr. Many studies have investigated separating the Hf-free Zr source from the waste pickling acid. The results showed that $Ba_2ZrF_8$ precipitates prepared from the waste pickling acid were useful as an electrolyte for the electrorefining of Zr in molten salt. In the present work, electrorefining was performed in a $Ba_2ZrF_8-LiF$ binary electrolyte to recover Zr from a Hf-free CuZr ingot anode prepared by electroreduction. Before electrorefining, two pretreatments are performed. First, electrolyte melting was carried out to determine the eutectic temperature, and second, the electrolyte was treated to eliminate impurities, mainly hydride. After electrorefining, the cathode deposits were analyzed by $O_2$ gas analyzer and SEM-EDX to explore the possibility of recovering nuclear-grade Zr metal. Moreover, the anode was analyzed by SEM-EDX to determine the Zr dissolution depth.

Critical Influence of Rivet Head Height on Corrosion Performance of CFRP/Aluminum Self-Piercing Riveted Joints

  • Karim, Md Abdul;Bae, Jin-Hee;Kam, Dong-Hyuck;Kim, Cheolhee;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.92-101
    • /
    • 2019
  • This study investigates how rivet head height affects the corrosion performance of carbon fiber reinforced plastic (CFRP) to aluminum alloy self-piercing riveted joints. Specimens with two different head heights were prepared. A rivet head protruding out of the top CFRP laminate forms the proud head height while a rivet head penetrating into the top CFRP generates the flush head height. The salt spray test evaluated corrosion performance. The flush head joints suffered from severe corrosion on the rivet head. Thus, the tensile shear load of flush head joints was substantially reduced. Electrochemical corrosion tests investigated the corrosion mechanisms. The deeper indentation of the flush head height damaged the CFRP around the rivet head. The exposure of damaged fibers from the matrix increased the cathodic potential of local CFRP. The increased potential of damaged CFRP accelerated the galvanic corrosion of the rivet head. After the rivet head coating material corroded, a strong galvanic couple was formed between the rivet head base metal (boron steel) and the damaged CFRP, further accelerating the flush rivet head corrosion. The results of this study suggest that rivet head flushness should be avoided to enhance the corrosion performance of CFRP to aluminum alloy self-piercing riveted joints.

Accelerated Prediction Methodologies to Predict the Outdoor Exposure Lifespan of Galvannealed Steel

  • Kim, Ki Tae;Yoo, Young Ran;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.86-91
    • /
    • 2019
  • Generally, atmospheric corrosion is the electrochemical degradation of metal that can be caused by various corrosion factors of atmospheric components and weather, as well as air pollutants. Specifically, moisture and particles of sea salt and sulfur dioxide are major factors in atmospheric corrosion. Using galvanized steel is one of the most efficient ways to protect iron from corrosion by zinc plating on the surface of the iron. Galvanized steel is widely used in automobiles, building structures, roofing, and other industrial structures due to their high corrosion resistance relative to iron. The atmospheric corrosion of galvanized steel shows complex corrosion behavior, depending on the plating, coating thickness, atmospheric environment, and air pollutants. In addition, corrosion products are produced in different types of environments. The lifespans of galvanized steels may vary depending on the use environment. Therefore, this study investigated the corrosion behavior of galvannealed steel under atmospheric corrosion in two locations in Korea, and the lifespan prediction of galvannealed steel in rural and coastal environments was conducted by means of the potentiostatic dissolution test and the chemical cyclic corrosion test.

Isolation and Characterization of a Rice Mitochondrial Small Heat Shock Protein Gene

  • Kim, Do-Hyun;Alam, Iftekhar;Lee, Dong-Gi;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.285-290
    • /
    • 2020
  • To understand the role of small heat shock protein (sHSPs) in rice plant response to various stresses such as the heat and oxidative stresses, a cDNA encoding a 24.1 kDa mitochondrial small HSP (Oshsp24.1) was isolated from rice by rapid amplification of cDNA ends (RACE) PCR. The deduced amino acid sequence shows very high similarity with other plant small HSPs. DNA gel blot analysis suggests that the rice genome contains more than one copy of Oshsp24.1. High level of expression of Oshsp24.1 transcript was observed in rice seedlings in response to heat, methyl viologen, hydrogen peroxide, ozone, salt and heavy metal stresses. Recombinant OsHSP24.1 protein was produced in E. coli cells for biochemical assay. The protein formed oligomeric complex when incubated with Sulfo-EGS (ethylene glycol bis (succinimidyl succinate)). Our results shows that Oshsp24.1 has an important role in abiotic stress response and have potential for developing stress-tolerant plants.

A Study on the Application of Cathodic Protection for Anti-Corrosion of Automobile Body

  • Sohn, DaeHong;lee, Yongho;Jang, HeeJin;Cho, SooYeon
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • The use of cathodic protection for metals can be achieved by sacrificial anode CP or impressed current CP, or a combination of both. Cathodic protection is a highly effective anti-corrosion technique for submerged metals or metals in soil. But because the non-immersion atmospheric automobile environment is a high resistance environment, it is limited by fundamental cathodic protection. However, the application of cathodic protection to automobiles is attractive because of the possibility of maintaining corrosion resistance while using lower-cost materials. A commercially available product for automobiles that uses both sacrificial anode CP and impressed current CP was tested in a periodic salt spray environment to investigate the performance of the devices. Experimental results show that the metal to be protected has different anti-corrosion effects depending on the distance from the anode of the device, but it is effective for the entire 120 cm long specimen exposed with one anode. The cathodic protection is effective because the conductive tape attached to the anode of the structure to be protected acts as a constant electrolyte in wet and dry conditions. The results show that the entire standard passenger car can be protected by cathodic protection with 4 anodes.

Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets (Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석)

  • Lee, Jae-Won;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

Application of AC superimposed DC waveforms to bismuth electrorefining

  • Greg Chipman;Bryant Johnson;Devin Rappleye
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1339-1346
    • /
    • 2024
  • Electrorefining in molten salts is used for purifying actinides. Optimizing electrorefining is key to minimizing processing time and radiological waste. One possible way of improving electrorefining efficiency is using an AC superimposed DC waveform. This waveform has demonstrated potential benefits in aqueous solutions but has never been utilized in a molten metal, molten salt application. This work investigates the effects of using an AC superimposed DC waveform on molten bismuth electrorefining in a molten LiCl-KCl-CaCl2 eutectic. Bismuth has been identified as a potential surrogate for plutonium electrorefining and a potential cathode in electrorefining used nuclear fuel (UNF). All electrorefining runs resulted in a high purity cathode ring and high yield with exception of the run using a low-frequency, high-amplitude superimposed AC waveform, which experienced some contamination and a lower yield. The other three AC superimposed DC runs experienced an average yield 6.7 % higher than the average yield of the DC runs. The electrorefining run using the high-frequency, high-amplitude superimposed AC signal had the highest yield. It is recommended in future studies to investigate the statistical variability of electrorefining yield and current efficiency and the impact of AC superimposed DC waveforms on solidified bismuth anodes.

Electrochemical characterization of LiCoO2 thin film by sol-gel process for annealing temperature and time (졸-겔법에 의해 합성한 리튬 코발트 산화물의 열처리 온도와 시간에 따른 전기 화학적 특성)

  • Roh, Tae-Ho;Yon, Seog-Joo;Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • $LiCoO_2$ thin film have received attention as cathodes of thin-film microbatteries. In this study, $LiCoO_2$ thin films were synthesized on Au substrates by sol-gel spin coating method and electrochemical properties were investigated under annealing temperature and time. The phycochemical properties of $LiCoO_2$ thin film were investigated by X-ray diffraction, scaning electron microscopy and atomic force microscopy. The electrochemical properties were characterized using galvanostatic charging/discharging cycling tests. From X-ray diffraction, as-grown films annealed at $550^{\circ}C$ and $750^{\circ}C$ are presumed to be spinel structure and a single phase of the layered-rock-salt, respectively. The RMS roughness and grain size of the films which annealed at $750^{\circ}C$ has similar values for annealing time 10 and 30 min, while for annealing time 120 min surface roughness, grain size increase and pore appearance were observed. The first discharge capacity of $LiCoO_2$ thin films annealed at $750^{\circ}C$ for 10, 30 and 120 min is about 54.5, 56.8 and $51.87{\mu}Ah/cm^2{\mu}m$, respectively. Corresponding capacity retention at 50th cycle is 97.25, 76.69, 77.19%.