DOI QR코드

DOI QR Code

Electrorefining of CuZr Alloy Using Ba2ZrF8-LiF Electrolyte

  • Lee, Seong Hun (Graduate School of Department of Materials Science & Engineering, Chungnam National University) ;
  • Choi, Jeong Hun (Graduate School of Department of Materials Science & Engineering, Chungnam National University) ;
  • Yoo, Bung Uk (RASOM, Chungnam National University) ;
  • Lee, Jong Hyeon (Graduate School of Department of Materials Science & Engineering, Chungnam National University)
  • Received : 2017.09.20
  • Accepted : 2017.11.06
  • Published : 2017.12.27

Abstract

In the production of zirconium cladding tube, a pickling acid solution is used to remove surface contaminants, which generates tons of pickling acid waste. The waste pickling solution is a valuable resource of Hf-free Zr. Many studies have investigated separating the Hf-free Zr source from the waste pickling acid. The results showed that $Ba_2ZrF_8$ precipitates prepared from the waste pickling acid were useful as an electrolyte for the electrorefining of Zr in molten salt. In the present work, electrorefining was performed in a $Ba_2ZrF_8-LiF$ binary electrolyte to recover Zr from a Hf-free CuZr ingot anode prepared by electroreduction. Before electrorefining, two pretreatments are performed. First, electrolyte melting was carried out to determine the eutectic temperature, and second, the electrolyte was treated to eliminate impurities, mainly hydride. After electrorefining, the cathode deposits were analyzed by $O_2$ gas analyzer and SEM-EDX to explore the possibility of recovering nuclear-grade Zr metal. Moreover, the anode was analyzed by SEM-EDX to determine the Zr dissolution depth.

Keywords

References

  1. T. S. Rudisill, J. Nucl. Mater., 385, 193 (2009). https://doi.org/10.1016/j.jnucmat.2008.10.016
  2. W. J. Kroll, W. W. Stephens and H. P. Homes, J. Met., 188, 1455 (1950).
  3. Laging, V. J. W, Fundamental Aspects of a New Process for the Production of Pure Zirconium, Delft University, p12-14 (2010).
  4. Y. Xiao, A. Van Sandwijk, Process for separating hafnium and zirconium, PCT, WO 2010131970 (A1) (2010).
  5. Y. Xiao, A. V. Sandwijk, Y. Yang, V. Laging, Molten Salts Chemistry and Technology, 389-401 (2014).
  6. K. T. Park, S. H. Kim, S. I. Hog, M. S. Choi, N. C. Cho, H. J. Yoo and J. H. Lee, J. Korean Inst. Res. Recycling, 21, 18 (2012). https://doi.org/10.7844/kirr.2012.21.5.18
  7. H. Nersisyan, B. U. Yoo, S. C. Kwon, D. Y. Kim, S. K. Han, J. H. Choi and J. H. Lee, Combust. Flame, 22-29 (2017)
  8. A. M. Abdelkader, A. Daher, R. A. Abdelakreem and E. El-Kashif, Metall. Mater. Trans. B, (2007).
  9. B. U. Yoo, S. K. Chung, Y. J. Lee and J. H. Lee, Korea Patent, 10-2017-0088158.
  10. N. C. Cho, J. M. Lee and S.-I. Hong, Korean J. Met. Mater., 49, 17 (2011). https://doi.org/10.3365/KJMM.2011.49.1.017
  11. J. E. Lee, N. C. Cho, C. M An and J. S. Noh and J. H. Moon, Clean Technology, 19, 264 (2013). https://doi.org/10.7464/ksct.2013.19.3.264
  12. S. K. Han, H. H. Nersisyan, Y. J. Lee, J. H. Choi and J. H. Lee, Korean J. Mater. Res. 26, (2016)
  13. R. S. Nicholson and I. Shain, Anal. Chem., 36, 706 (1964). https://doi.org/10.1021/ac60210a007
  14. K. T. Park, T. H. Lee, N. C. Jo, H. H. Nersisyan, B. S. Chun, H.-H. Lee and J. H. Lee, J. Nucl. Mater., 436, 130 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.310
  15. M. Gibilaro, L. Massot, P. Chamelot, L, Cassayre and P. Taxil, Electrochim. Acta, 95, 185 (2013). https://doi.org/10.1016/j.electacta.2013.02.022
  16. J. Y. Park, Ph. D., p. 75-76, Seoul National University, Seoul (2014).
  17. L. Xu, Y. Xiao, Q. Xu, A. van Sandwijk, J. Li, Z. Zhao, Q. Song and Y. Yang, RSC Adv., 6, 84472 (2016). https://doi.org/10.1039/C6RA17102H