• Title/Summary/Keyword: metal reducing bacteria

Search Result 67, Processing Time 0.184 seconds

A Microbial Fuel Cell Type Lactate Biosensor Using a Metal-Reducing Bacterium, Shewanella putrefaciens

  • KIM, HYUNG JOO;MOON SIK HYUN;IN SEOP CHANG;BYUNG HONG KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.365-367
    • /
    • 1999
  • A fuel cell type biosensor for lactate was developed using a metal-reducing bacterium, Shewanella putrefaciens IR-1. Under the operational conditions, the bacterial cell suspension generated the current without an electrochemical mediator in the presence of lactate. The current was proportional to the lactate concentration up to 30 mM.

  • PDF

Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium (황산염환원미생물에 의한 금속재료의 부식 특성)

  • Lee, Seung Yeop;Jeong, Jongtae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.219-228
    • /
    • 2013
  • To understand characteristics of biogeochemical corrosion for the metal canisters that usually contain the radioactive wastes for a long-term period below the ground, some metal materials consisting of cast iron and copper were reacted for 3 months with D. desulfuricans, a sulfate-reducing bacterium, under a reducing condition. During the experiment, concentrations of dissolved metal ions were periodically measured, and then metal specimen and surface secondary products were examined using the electron microscopy to know the chemical and mineralogical changes of the original metal samples. The metal corrosion was not noticeable at the absence of D. desulfuricans, but it was relatively greater at the presence of the bacterium. In our experiment, darkish metal sulfides such as mackinawite and copper sulfide were the final products of biogeochemical metal corrosion, and they were easily scaled off the original specimen and suspended as colloids. For the copper specimen, in particular, there appeared an accelerated corrosion of copper in the presence of dissolved iron and bacteria in solution, probably due to a weakening of copper-copper binding caused by a growth of other phase, iron sulfide, on the copper surface.

Most Probable Number 방법을 이용하여 측정한 중랑천 하상토양의 혐기성 세균의 수와 수질과의 상관 관계

  • Park, Doo-Hyun;Kim, Byung-Hong;Lim, Si-Keun;Choi, Young-Hyo
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.364-370
    • /
    • 1996
  • Sediments collected from the Jungnang-cheon and its tributaries were used to enumerate anaerobic bacteria by most probable number (MPN) methods. A simple method was developed to detect ferrous ion in the culture fluid in order to count the number of iron ion reducers, and sulfate-reducing bacteria (SRB) and methanogens were detected by the presence of FeS precipitate in the culture or methane in the head space, respectively. The numbers of iron reducer was in the range of 10$^{7}$ - 10$^{8}$ /g in the sediment of the stream containing higher organic content than the tributaries. The sediments of tributaries were analyzed to contain iron reducers less than 10$^{7}$ cells/g. With one exception the numbers of SRB and methanogens were less than 10$^{3}$ cells/g in the sediment. From these results it is concluded that organics in the sediment support the growth of iron reducers, which out-compete SRB and methanogens.

  • PDF

Bacterial Effects on Geochemical Behavior of Elements : An Overview on Recent Geomicrobiological Issues (원소의 지구화학적 거동에 미치는 박테리아의 영향 : 지구미생물학의 최근 연구 동향)

  • 이종운;전효택
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.353-365
    • /
    • 2000
  • After their first appearance on Earth, bacteria have exerted significant influence on geochemical behavior of elements. Numerous evidence of their control on geochemistry through geologic history has been observed in a variety of natural environments. They have mediated weathering rate, formation of secondary minerals, redox transformation of metals and metalloids, and thus global cycling of elements. Such ability of bacteria receives so considerable attention from microbiologists, mineralogists, geologists, soil scientists, limnologists, oceanographers, and atmospheric scientists as well as geochemists that a new and interdisciplinary field of research called 'geomicrobiology' is currently expanding. Some recent subjects of geomicrobiology which are studied extensively are as follows: 1) Functional groups distributed on bacterial cell walls adsorb dissolved cations onto cell surfaces by electrostatic surface complexation, which is followed by hydrous mineral formation. 2) Dissimilatory metal reducing bacteria conserve energy to support growth by oxidation of organic matter coupled to reduction of some oxidized metals and/or metalloids. They can be effectively used in remediating environments contaminated with U, As, Se, and Cr. 3) Bacteria increase the rate of mineral dissolution by excreting proton and ligands such as organic acids into aqueous system. 4) Thorough investigation on the effects of biofilm on geochemical processes is needed, because most bacteria are adsorbed on solid substrates and form biofilms in natural settings.

  • PDF

Microbial Production and Characterization of Superparamagnetic Magnetite Nanoparticles by Shewanella sp. HN-41

  • Lee, Ji-Hoon;Roh, Yul;Hur, Hor-Gil
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1572-1577
    • /
    • 2008
  • A facultative dissimilatory metal-reducing bacterium, Shewanella sp. strain HN-41, was used to produce magnetite nanoparticles from a precursor, poorly crystalline iron-oxyhydroxide akaganeite ($\beta$-FeOOH), by reducing Fe(III). The diameter of the biogenic magnetite nanoparticles ranged from 26 nm to 38 nm, characterized by dynamic light scattering spectrophotometry. The magnetite nanoparticles consisted of mostly uniformly shaped spheres, which were identified by electron microscopy. The magnetometry revealed the superparamagnetic property of the magnetic nanoparticles. The atomic structure of the biogenic magnetite, which was determined by extended X-ray absorption fine structure spectroscopic analysis, showed similar atomic structural parameters, such as atomic distances and coordinations, to typical magnetite mineral.

Changes of the Oxidation/Reduction Potential of Groundwater by the Biogeochemical Activity of Indigenous Bacteria (토착미생물의 생지화학적 활동에 의한 지하수의 산화/환원전위 변화 특성)

  • Lee, Seung Yeop;Roh, Yul;Jeong, Jong Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.61-69
    • /
    • 2014
  • As we are trying to in-situ treat (purify or immobilize) heavy metals or radionuclides in groundwater, one of the geochemical factors to be necessarily considered is the value of oxidation/reduction potential (ORP) of the groundwater. A biogeochemical impact on the characteristic ORP change of groundwater taken from the KAERI underground was observed as a function of time by adding electron-donor (lactate), electron-acceptor (sulfate), and indigenous bacteria in a laboratory condition. There was a slight increase of Eh (slow oxidation) of the pure groundwater with time under a $N_2$-filled glove-box. However, most of groundwaters that contained lactate, sulfate or bacteria showed Eh decrease (reduction) characteristics. In particular, when 'Baculatum', a local indigenous sulfate-reducing bacterium, was injected into the KAERI groundwater, it turned to become a highly-reduced one having a decreased Eh to around -500 mV. Although the sulfate-reducing bacterium thus has much greater ability to reduce groundwater than other metal-reducing bacteria, it surely necessitated some dissolved ferrous-sulfate and finally generated sulfide minerals (e.g., mackinawite), which made a prediction for subsequent reactions difficult. As a result, the ORP of groundwater was largely affected even by a slight injection of nutrient without bacteria, indicating that oxidation state, solubility and sorption characteristics of dissolved contaminants, which are affected by the ORP, could be changed and controlled through in-situ biostimulation method.

Electrochemical Analysis of the Microbiologically Influenced Corrosion of Steels by Sulfate-Reducing Bacteria

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Ki-Joon;Kim, Seong-Jong;Shin, Sung-Kyu;Koh, Sung-Cheol
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.187-193
    • /
    • 2004
  • We have investigated the differences between the general corrosion and microbiologically influenced corrosion (MIC) of steels in terms of electrochemical behavior and surface phenomena. Corrosion potential of steels in the absence of SRB (sulfate-reducing bacteria) shifted to a low level and was maintained throughout the experimental period (40 days). The potential in the presence of SRB, however, shifted to a noble level after 20 days' incubation, indicating the growth of SRB biofilms on the test metal specimens and a formation of corrosion products. In addition, the color of medium inoculated with SRB changed from gray to black. The color change appeared to be caused by the formation of pyrites (FeS) as a corrosion product while no significant color change was observed in the medium without SRB inoculation. Moreover, corrosion rates of various steels tested for MIC were higher than those in the absence of SRB. This is probably because SRB were associated with the increasing corrosion rates through increasing cathodic reactions which caused reduction of sulfate to sulfide as well as formation of an oxygen concentration cell. The pitting corrosions were also observed in the SRB-inoculated medium.

Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria (황산염환원균을 이용한 폐광폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Kwang Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

Existence and Characteristics of Microbial cells in the Bentonite to be used for a Buffer Material of High-Level Wastes (고준위폐기물 완충재로 사용되는 벤토나이트의 미생물의 존재 및 특성)

  • Lee, Ji Young;Lee, Seung Yeop;Baik, Min Hoon;Jeong, Jong Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • There was a study for biological characteristics, except for physico-chemical and mineralogical properties, on the natural bentonite that is considered as a buffer material for the high-level radioactive waste disposal site. A bentonite slurry that was prepared from a local 'Gyeongju bentonite' in Korea was incubated in a serum bottle with nutrient media over 1 week and its stepwise change was observed with time. From the activated bentonite in the nutrient media, we can find a certain change of both solid and liquid phases. Some dark and fine sulfides began to be generated from dissolved sulfate solution, and 4 species of sulfate-reducing bacteria (SRB) were identified as living cells in samples that were periodically taken and incubated. These results show that sulfate-reducing (or metal-reducing) bacteria are adhering and existing in the powder of bentonite, suggesting that there may be a potential occurrence of longterm biogeochemical effects in and around the bentonite buffer in underground anoxic environmental conditions.