DOI QR코드

DOI QR Code

Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium

황산염환원미생물에 의한 금속재료의 부식 특성

  • 이승엽 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 정종태 (한국원자력연구원 방사성폐기물처분연구부)
  • Received : 2013.09.05
  • Accepted : 2013.10.16
  • Published : 2013.12.31

Abstract

To understand characteristics of biogeochemical corrosion for the metal canisters that usually contain the radioactive wastes for a long-term period below the ground, some metal materials consisting of cast iron and copper were reacted for 3 months with D. desulfuricans, a sulfate-reducing bacterium, under a reducing condition. During the experiment, concentrations of dissolved metal ions were periodically measured, and then metal specimen and surface secondary products were examined using the electron microscopy to know the chemical and mineralogical changes of the original metal samples. The metal corrosion was not noticeable at the absence of D. desulfuricans, but it was relatively greater at the presence of the bacterium. In our experiment, darkish metal sulfides such as mackinawite and copper sulfide were the final products of biogeochemical metal corrosion, and they were easily scaled off the original specimen and suspended as colloids. For the copper specimen, in particular, there appeared an accelerated corrosion of copper in the presence of dissolved iron and bacteria in solution, probably due to a weakening of copper-copper binding caused by a growth of other phase, iron sulfide, on the copper surface.

방사성 폐기물을 지하에 장기 보관하는 금속 용기에 관한 생지화학적 부식 특성을 알아보기 위해 주철과 구리로 된 금속재료를 환원조건 하에서 디설프리칸스 황산염환원미생물과 3개월간 반응시켰다. 금속재료의 화학적/광물학적 변화를 알아보기 위해 주기적으로 용존 금속이온들의 농도를 측정하였으며, 실험이 종료된 이후 금속 시편 및 표면 이차생성물들을 전자현미경을 이용하여 분석하였다. 디설프리칸스가 없는 조건에서는 금속재료의 부식이 매우 미약하였으나, 미생물이 있는 경우에는 부식이 상대적으로 컸다. 관찰된 생지화학적 부식 산물은 주로 맥키나와이트와 황화구리 같은 검은색의 금속황화물이었으며, 표면에서 쉽게 분리되거나 콜로이드화되어 부유하였다. 특히, 구리 시편의 경우 용액 상에 용존 철이 존재할 때 세균에 의한 구리 부식의 가속화가 관찰되었는데, 이는 구리 표면에 다른 종의 황화철이 성장하면서 구리 간의 결속력을 약화시켰기 때문인 것으로 보인다.

Keywords

References

  1. Bennig, L.G., Wilkin, R.T., and Barnes, H.L. (2000) Reduction pathways in the Fe-S system below 100 degrees C. Chemical Geology, 167, 25-51. https://doi.org/10.1016/S0009-2541(99)00198-9
  2. Choi, H.J., Lee, J.Y., and Choi, J.W. (2013) Development of geological disposal systems for spent fuels and high-level radioactive wastes in Korea. Nuclear Engineering and Technology, 45, 29-40. https://doi.org/10.5516/NET.06.2012.006
  3. Ehrlich, H.L. and Newman, D.K. (2009) Geomicrobiology (5th Ed.). CRC Press, 606p.
  4. Kamrunnahar, M. and Urquidi-Macdonald, M. (2011) Prediction of corrosion behaviour of Alloy 22 using neural network as a data mining tool. Corrosion Science, 53, 961-967. https://doi.org/10.1016/j.corsci.2010.11.028
  5. Konhauser, K. (2007) Introduction to Geomicrobiology. Blackwell publishing, 425p.
  6. Lee, J.Y., Lee, S.Y., Baik, M.H., and Jeong, J.T. (2013) Existence and characteristics of microbial cells in the bentonite to be used for a buffer material of high-level wastes. Journal of the Korean Radioactive Waste Society, 11, 95-102. (in Korean with English abstract). https://doi.org/10.7733/jkrws.2013.11.2.95
  7. Lee, M.S. and Choi, H.J. (2010) Crevice corrosion evaluation of cold spray copper. Journal of the Korean Radioactive Waste Society, 8, 247-260. (in Korean with English abstract).
  8. Lee, M.S., Choi, H.J., Choi, J.W., and Kim, H.J. (2011a) Application of cold spray coating technique to an underground disposal copper canister and its corrosion properties. Nuclear Engineering and Technology, 43, 557-566. https://doi.org/10.5516/NET.2011.43.6.557
  9. Lee, M.S., Choi, H.J., Lee, J.Y., and Choi, J.W. (2012a) Design, manufacturing, and performance estimation of a disposal canister for the ceramic waste from pyroprocessing. Journal of the Korean Radioactive Waste Society, 10, 209-218. (in Korean with English abstract). https://doi.org/10.7733/jkrws.2012.10.3.209
  10. Lee, S.Y., Oh, J.M., Baik, M.H., and Lee, Y.J. (2011b) Change of oxidation/reduction potential of solution by metal-reducing bacteria and roles of biosynthesized mackinawite. Journal of the Mineralogical Society of Korea, 24, 279-287. (in Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.4.279
  11. Lee, S.Y., Baik, M.H., and Jeong, J.T. (2012b) Study on the oxidation and dissolution characteristics of biogenic mackinawite. Journal of the Mineralogical Society of Korea, 25, 155-162. (in Korean with English abatract). https://doi.org/10.9727/jmsk.2012.25.3.155
  12. Masurat, P., Eriksson, S., and Pedersen, K. (2010) Microbial sulphide production in compacted Wyoming bentonite MX-80 under in situ conditions relevant to a repository for high-level radioactive waste. Applied Clay Science, 47, 58-64. https://doi.org/10.1016/j.clay.2009.01.004
  13. Pena, J., Torres, E., Turrero, M.J., Escribano, A., and Martín, P.L. (2008) Kinetic modelling of the attenuation of carbon steel canister corrosion due to diffusive transport through corrosion product layers. Corrosion Science, 50, 2197-2204. https://doi.org/10.1016/j.corsci.2008.06.004
  14. Rickard, D. (1995) Kinetics of FeS precipitation. Part I. Competing reaction mechanisms. Geochimica et Cosmochimica Acta, 59, 4367-4379. https://doi.org/10.1016/0016-7037(95)00251-T
  15. Rosborg, B., Pan, J., and Leygraf, C. (2005) Tafel slopes used in monitoring of copper corrosion in a bentonite/groundwater environment. Corrosion Science, 47, 3267-3279. https://doi.org/10.1016/j.corsci.2005.07.007
  16. Wu, L., Beauregard, Y., Qin, Z., Rohani, S., and Shoesmith, D.W. (2012) A model for the influence of steel corrosion products on nuclear fuel corrosion under permanent disposal conditions. Corrosion Science, 61, 83-91. https://doi.org/10.1016/j.corsci.2012.04.027

Cited by

  1. Anaerobic Corrosion Properties of Sangpyeongtongbo Excavated at Bigyeongdo, Seosan vol.33, pp.3, 2017, https://doi.org/10.12654/JCS.2017.33.3.02
  2. 벤토나이트 완충재의 구리치환 반응 특성 vol.27, pp.4, 2013, https://doi.org/10.9727/jmsk.2014.27.4.293