• Title/Summary/Keyword: metal plate

Search Result 1,037, Processing Time 0.031 seconds

Study on Metal Plate Connections and Plywood Gusset Plate Connections for Light-Frame Wood Truss Tension Joint (목재 트러스 접합부의 toothed metal plate 접합과 plywood gusset plate 접합에 관한 연구)

  • Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.46-50
    • /
    • 1992
  • 본 연구는 잣나무 간벌재를 이용한 plywood gusset plate 접합과 toothed metal plate 접합에 대하여 인장력을 가해 조사하였다. plywood gusset plate 접합에 있어서는 합판과 부재 사이를 상온 경화제(초산 비닐 수지)로 접착한 후 6d 못으로 접합한 형태와 단지 합판만을 사용한 형태의 plywood gusset plate 접합 사이의 기계적 특성 차이를 조사했다. toothed metal plate 접합은 plywood gusset plate 접합보다 인장력에서 좋은 behavior를 보였다. 또한 접착제를 가한 plywood gusset plate 접합은 접합제를 가하지 않은 형태보다 큰 하중 지지력을 보였다.

  • PDF

A STUDY ON THE BONDING STRENGTH OF RESILIENT DENTURE LINERS (탄성 의치상 이장재의 접착력에 관한 연구)

  • Lee Sang-Hoon;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.411-436
    • /
    • 1992
  • The purpose of this study was to assess the adhesion of resilient denture liners (such as, heat-cured silicone molloplast B,cold- cured silicone Mollosil) to polymethyl metacrylate (K-33) and metal (Megalloy) in the laboratory by peel test. The resilient denture lines were processed according to manufactures instruction, onto prepared specimens(original resin base plate, rough resin base plate, stippled metal plate, mesh metal plate ) 75mm long and 25m wide. And then, the peel test was performed by instron. The results were as follows : 1. The bonding strength of Mollosil was stronger than that of Molloplast B except the specimen of stippled metal plate. 2. The tensile strength of Mollosil was weaker than that of Molloplast Bas tearing of Mollosil was occured in the peel test. 3. Mesh metal plate had the highest bonding strength in the case of Molloplast B and Mollosil. But stippled metal plate have high bonding strength in the case of Molloplast B and have the lowest bonding strength in the case of Mollosil. 4. The bonding strength of rough resin base plate was stronger than that of original resin base plate in the case of Molloplast B and Mollosil. 5. The bonding strength of metal plates was stronger than that of resin base plates in the case of Molloplast B and Mollosil except the case of bonding strength between the stippled metal plate and Mollosil. 6. It seems that the Increase of surface and retention form of metal plate and resin base plate produces higher physical bonding strength.

  • PDF

Durability Improvement of Metal Convex Printing Plate for Securities Printing (유가증권 인쇄용 금속 볼록판의 내구성 향상에 관한 연구)

  • Lee, Hyok-Won;Kang, Young-Reep;Kim, Byong-Hyun
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.133-142
    • /
    • 2011
  • We produce a photosensitive convex plate to research a Nickel metal relief printing plate using galvanic process. A Method for preparing DLC convex plate that is metalized on Nickel metal relief printing plate using CVD(Chemical Vapor Deposition) process and $N_2DLC$-convex plate that is DLC metalized thin film layer of $N_2$ plasma surface treatment are comprised. DLC thin film layers on Nickel surface are fragile. The results of the research indicate that the coefficient of friction on DLC metalized thin film layer is relatively low than Nickel surface and the durability of Nickel surface coated DLC metalized thin film layer is superior to Nickel surface. A relative evaluation of three form plate wetting properties using varnish liquid-drop plate indicates superior printing aptitudes for $N_2DLC$, DLC, Nichel plate order as above.

Effect of Soft Error Rate on SRAM with Metal Plate Capacitance

  • Kim Do-Woo;Gong Myeong-Kook;Wang Jin-Suk
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.242-245
    • /
    • 2005
  • We compared and analyzed ASER (Accelerated Soft Error Rate) for cell structures and metal plate capacitance in the fabricated 16M SRAM. Application of the BNW (Buried NWELL) lowered the ASER value compared to the normal well structure. By applying the metal plate capacitor with the BNW, the lowest ASER value can be obtained. The thinner oxide thickness of the metal plate capacitor provides higher capacitance and lower ASER value. The ASER is improved from 2200 FIT to 1000 FIT after sole application of the BNW. However, it is dramatically improved to 15 FIT once the metal plate capacitor is additionally applied.

Development of Vacuum System for Improving Productivity of Fine Multi-hole Sheet Metal Product (미세 다공 박판제품 생산성 향상을 위한 진공 시스템의 개선)

  • Park, Joon-Hong;Kwon, Taek-Hwan;Choi, Young;Kim, Chul;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.180-188
    • /
    • 2000
  • Fine multi-hole sheet metal product(FMSMP) is a specific metal plate which is used in color TV and computer monitor. Processes of manufacturing FMSMP are generally composed of coating cleaning exposure and etching processes. After a thin metal plate is made by rolling photosensitive liquid is coated on the metal plate in coating process. Then the coated thin metal plate consecutively passes through exposure process in which upper and lower glasses are compressed by vacuuming the space between glasses and metal plate. In this lowered glasses are compressed by vacuuming the space between glasses and metal plate. In this lowered vacuum state certain part of metal plate is desirably exposed to light and will be etched into forming lots of well-arranged holes with a specific diameter, nowadays to manufacture FMSMP of 17 inch braun tube 80 second is required for complete vacuum but 35 second is applied to manufacture FMSMP in reality. In the present study vacuuming time is tried to reduce for improvement of productivity by analyzing vacuum system and proposing several solutions, for faster vacuuming speed degree of vacuum state between glasses and metal plate is improved by the proposed method and experiments using the proposed method are performed for verification. In addition microstructure of FMSMP is investigated to prevent stain phenomena and to improve quality of the product.

  • PDF

Tensile Properties of Metal Plate Connector in Domestic Softwood Lumber (국산 침엽수 철물접합부의 인장하중 특성)

  • Shim, Kug-Bo;Park, Jung-Hwan;Lee, June-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.96-103
    • /
    • 2003
  • This study was conducted to evaluate the tensile properties of metal plate connector for the domestic major softwoods, such as Korean red pine, Korean white pine, and Japanese larch. The maximum tensile load of Korean red pine was 3,612kgf in AA type, it was 1.2 and 1.7 times higher load than that of Japanese larch and Korean white pine. In EA type, it was 2,704kgf, and 1.1 and 1.5 times higher than the loads of Japanese larch and Korean white pine. The failure modes of metal plate connector were metal plate withdrawal, plate tensile failure, and wood shear block failure. The failure mode of Korean red pine connector was tensile failure of plate, that is reason of the high tensile load resistance for metal plate connections in Korean red pine. The mechanical properties of metal plate connector could be predicted by the Foschi model parameter. In the initial stage, the Korean red pine connector was stiffer than the other species. The design values for metal plate connector per tooth was 25, 22, and 15kgf for Korean red pine, Japanese larch, and Korean white pine in AA type and 19, 17, and 13kgf in EA type.

Dose Distribution in Solid Phantom by TLD with a Metal Plate of Various Thicknesses (다양한 두께의 금속판을 얹은 TLD를 이용하여 구한, 고체 팬텀 내에서의 선량분포)

  • Kim, Sookil
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 1999
  • Purpose: TLD experiments were set up to measure the dose distribution and to analyze the influence on dose measurement of thin metal plate and solid water phantom. The aim of the present study was to investigate the build-up effect of metal plate loaded on TLD chip and depth dose in the controlled environment of phantom measurements. Materials and Methods: Measurements were done by using LiF TLD-100 loaded by a thin metal plate with the same surface area (3.2$\times$3.2 $\textrm{mm}^2$) as TLD chip. TLD chips loaded with one metal plate from three different metal plate (Tin, Copper, Gold) of different thicknesses (0.1, 0.15, 0.2, 0.3 mm) were used respectively to measure radiation dose. Using the TLD loaded with one metal plate, surface dose and the depth dose at the build-up maximum region were investigated. Results: Using a metal plate on TLD chip increased the surface dose. Surface dose curve shows the dose build-up against equivalent thickness of metal to water. The values of TL reading obtained by using metal plate at depth of build-up maximum are about 8% to 13% lower than those obtained by normal TLD chip. Conclusion: The metal technique used for TLD dosimetry could provide clinicals information about the build-up of dose up to 4.2mm depth in addition to a depth dose distribution. The results of TLD with a metal plate measurements may help with decisions to boost or bolus certain areas of the skin.

  • PDF

Coating Durability of Metal Bipolar plate for Low Temperature PEMFC (저온 PEMFC용 금속분리판 코팅의 내구 특성 연구)

  • Kang, Sungjin;Jeon, Yootaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.82.2-82.2
    • /
    • 2010
  • The development of bipolar plate having high efficiency and chemical properties has a major impact on fuel cell applications commercialization. Even though graphite bipolar plate has high electric conductivity and chemical resistance, it has demerits about mass production and brittle property for commercialization. Hence, metallic bipolar plate can be substitute for fuel cell bipolar plate. Although its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions, metallic bipolar plate for PEMFC is more suitable for automotive and residential power generation system because of its high mechanical strength, low gas permeability and applicability to mass production. Therefore, several types of coating has been applied to prevent corrosion and oxide film growth and to achieve more high durability. This work presents durability of coated metal bipolar plate for low temperature PEMFC which made for fuel cell vehicle. This results showed surface treatment increase long-term durability, even electric conductivity and corrosion resistance.

  • PDF

Establishment of Fundamental Process Conditions on Properties of Magnesium Alloy Thin Plates Fabricated by the Melt Drag Method (용융드래그방법으로 제작한 마그네슘합금 박판의 특성에 미치는 기본적인 공정조건 확립)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.7
    • /
    • pp.326-331
    • /
    • 2022
  • AZ31 magnesium alloy was used to manufacture a thin plate using a melt drag method. The effects of roll speed, molten metal temperature, and molten metal height, which are the basic factors of the melt drag method, on the surface shape, the thickness of the thin plate, Vickers hardness, and microstructure of the thin plate were investigated. It was possible to manufacture AZ31 magnesium alloy thin plate at the roll speed range of 1 to 90 m/min. The thickness of the thin plate, manufactured while changing only the roll speed, was about 1.8 to 8.8 mm. The shape of the solidified roll surface was affected by two conditions, the roll speed and the molten metal height, and the Vickers hardness of the manufactured magnesium alloy thin plate value ranged from Hv38~Hv60. The microstructure of the thin plate produced by this process was an equiaxed crystal and showed a uniform grain size distribution. The grain size was greatly affected by the contact state between the molten metal and the solidification roll, and the amount of reactive solids and liquids scraped at the same time as the thin plate. The average grain size of the thin plate fabricated in the range of these experimental conditions changed to about 50-300 ㎛.

Structural analysis in Metal bipolar plate of Fuel Cell Stack (금속분리판 연료전지 스택의 구조 해석)

  • Lee, Sang-Min;Jeon, Ji-Hoon;Lee, Chang-Woo;Suh, Jung-Do;Chang, Hoon;Kim, Sae-Hoon;Lee, Sung-Ho;Hwang, Woon-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.101-104
    • /
    • 2007
  • Mechanical behavior in metal bipolar plate of a fuel cell stack was studied using finite element analysis. The fuel stack is essentially composed of a metal bipolar plate (metal BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). It is important to maintain a suitable fastening force of Metal BP, because it influences the power efficiency of the fuel cell stack. After a gasket and a GDL are placed on the metal BP, the reaction force with the displacement is measured. The channel of metal bipolar plate is replaced by a simple geometrical plate. The results of FEM are similar to those of experiment. Therefore mechanical behavior in metal BP of a fuel cell stack can be estimated by using FEM.

  • PDF