• Title/Summary/Keyword: metal pipe

Search Result 318, Processing Time 0.027 seconds

Isothermal Characteristics of a Rectangular Parallelepiped Sodium Heat Pipe

  • Boo Joon Hong;Park Soo Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1044-1051
    • /
    • 2005
  • The isothermal characteristics of a rectangular parallelepiped sodium heat pipe were inves­tigated for high-temperature applications. The heat pipes was made of stainless steel of which the dimension was $140\;m\;(L)\;{\times}\;95m\;(W)\;{\times}\;46 m\;(H)$ and the thickness of the container was 5 mm. Both inner surfaces of evaporator and condenser were covered with screen meshes to help spread the liquid state working fluid. To provide additional path for the working fluid, a lattice structure covered with screen mesh wick was inserted in the heat pipe. The bottom surface of the heat pipe was heated by an electric heater and the top surface was cooled by circulating coolant. The concern in this study was to enhance the temperature uniformity at the bottom surface of the heat pipe while an uneven heat source up to 900 W was in contact. The temperature distribution over the bottom surface was monitored at more than twenty six locations. It was found that the operating performance of the sodium heat pipe was critically affected by the inner wall temperature of the condenser region where the working fluid may be changed to a solid phase unless the temperature was higher than its melting point. The maximum temperature difference across the bottom surface was observed to be $114^{\circ}C$ for 850 W thermal load and $100^{\circ}C$ coolant inlet temperature. The effects of fill charge ratio, coolant inlet temperature and operating temperature on thermal performance of heat pipe were analyzed and discussed.

Mechanical Properties Evaluation of Gas Tungsten Arc Welding for INCONEL 718 alloy apply to Cryogenic Condition (극저온 환경에 적용되는 INCONEL 718합금의 Gas Tungsten Arc Welding 기계적 특성 평가)

  • Kim, Ki-Hong;Moon, In-Sang;Moon, Il-Yoon;Rhee, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.692-698
    • /
    • 2009
  • Inconel 718 alloy has excellent mechanical properties at room temperature, high temperature and cryogenic conditions. UTS of base metal is about 900MPa at room temperature; this is increased up to 1300MPa after heat treatment & aging-hardening. Mechanical properties of Inconel 718 Alloy were similar to those shown in the the results for tensile test; mechanical properties of Inconel 718 alloy's GTAW were similar to those of base metal's properties at room temperature. Mechanical properties at cryogenic conditions were better than those at room temperature. Heat-treated Inconel 718, non- filler metal GTAW on Inconel 718 and GTAW used filler metal on Inconel 718's UTS was 1400MPa at cryogenic condition. As a result, the excellent mechanical properties of Inconel 718 alloy under cryogenic conditions was proved through tensile tests under cryogenic conditions. In addition, weldability of Inconel 718 alloy under cryogenic conditions was superior to that of its base-metal. In this case, UTS of hybrid joint (IS-G) at -100$^{\circ}C$ was 900MPa. Consequently, UTS of Inconel 718 alloy is estimated to increase from -100$^{\circ}C$ to a specific temperature below -100$^{\circ}C$. Therefore, Inconel 718 alloy is considered a pertinent material for the production of Lox Pipe under cryogenic conditions.

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

RFID Applicability Study to Prevent the Third Party Accident of LNG Pipe Line (가스관 굴착사고 예방을 위한 RFID 인식기술의 적용성 연구)

  • Han, Sang-Wook;Park, Su-Ri;Kim, Byung-Jick
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • According to the last 5 year statistics of KGS, there occurred 22 under ground gas pipe accidents per year in Korea. And about 5 accidents per year were caused from the third party digging. IT recognition technique could reduce such underground gas accidents. Among IT recognition technique, RFID is most poplar. In the air, RFID were applied to various fields including the distribution industry, but underground condition, the research and application cases of RFID were little This research was undertaken to see the applicability of RFID to underground gas pipe safety. By use of 900 MHz RFID reader and commercial metal tag, the stable recognition distance was measured in the similar underground condition of LNG pipe. Stable recognition depth of RFID tag were measured to be 50, 45, 25 cm in the medium of soil, 5 cm-thick-concrete+soil, and water respectively. The measured distances were considered to be the meaningful distance to prevent the gas pipe accidents Also the efficient ways to input the required gas pipe data to the 24 byte metal tag were proposed. Application of RFID to underground LNG supply system will not only reduce the gas accidents due to third party digging but also improve the gas line maintenance efficiency.

A Simple Finite Element Modeling Method for Leak-Before-Break Crack Analysis of Pipe with Overlay Dissimilar Metal Weldments (이종금속 오버레이 용접 배관의 파단전누설균열 해석을 위한 단순 유한요소 모델링 방법)

  • Kim, Maan Won;Park, Young Sup
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • Several finite element models for the leak-before-break (LBB) assessment of overlay dissimilar metal weldment were constructed and analyzed to develop a simple finite element modeling method. The J-integral, crack opening displacement (COD) and J-integral distribution along the crack front in thickness direction due to the applied moment were obtained from the analysis results of the constructed finite element models, and studied compared to the previous literatures. It is concluded that the modeling with base material only is simple and produces a slightly conservative results compared to the complex modeling composed with weld metal and base metal in the calculation of J-integrals and COD values which are used for the calculation of fracture toughness and postulated leakage crack length respectively.

Cooling Technique for Electronic Equipments using a small scale CPL heat pipe (소형 CPL 히트파이프를 이용한 전자장치 냉각 기술)

  • Kang, Sarng-Woo;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1241-1246
    • /
    • 2004
  • The heat flux on a chip is rapidly increasing with decreasing the size of one. It is necessary to properly cool the high heat flux chip. One of the promising cooling methods is to apply CPL heat pipes with porous materials, for example PVA, polyethylene, and powder sintered metal plate and with microchannels in the evaporator. A small scale CPL heat pipe with PVA as wick was designed and manufactured. Since the height difference between the evaporator and the condenser is a crucial parameter in the CPL heat pipes, the performance of the heat pipes depending on the parameter was investigated. The parameter is higher the performance is better. However, the improvement rate of the performance does not increase the increase rate of the height. In addition to, the parameter effect depending on heat input was investigated.

  • PDF

A study on the Internal machining of a large-diameter Stainless pipe for Semiconductor Using Experimental Design Method (실험계획법을 이용한 반도체용 대구경 스테인레스관의 내경 가공에 관한 연구)

  • 김창근;이은상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.71-76
    • /
    • 2003
  • This paper describes the characteristic of a large-diameter pipe to obtain smooth surface using Electropolishing after grinding using a non-woven fabric. Grinding using a non-woven fabric is possible under lower load and fine effect comparing with Wheel grinding. Also, the ion from the surface of the metal is eliminated by means of an electrical potential and current in Electropolishing. Electropolishing is used for leveling the surface, improving the physical appearance of the part, promoting corrosion properties and reducing contamination and adhesion of the surface. Therefore, the aim of the present study is to investigate the internal machining of a large-diameter pipe for semiconductor using experimental design method.

  • PDF

Evaluation of Fatigue Life Characteristic of a Real Waterwork Pipe Using the Probability Density Function (확률밀도함수를 이용한 상수도 실 배관의 피로수명 특성 평가)

  • Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung;Song, Weon-Keyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.707-712
    • /
    • 2008
  • The fatigue characteristics of a material or a structure are generally derived from fatigue tests of standard specimens. However, test results of standard specimens are different from those of real structures or components. Therefore, to calculate more accurate fatigue life, the geometrical effect and surface condition must be considered by comparing test results of standard specimens with those of real structures or components. Thus the object of this paper is to evaluate the fatigue characteristics of a real waterwork pipe. Also, to evaluate fatigue characteristic based on life distribution, the statistical fatigue characteristics were analyzed by the normal distribution and related data of P-S-N curve.

Mechanical Properties of High Strength Hot Strips For Line Pipe Application (라인파이프용 고강도 열연강판의 기계적 성질)

  • 김문수;김준성;강기봉;노광섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.383-389
    • /
    • 1999
  • The purpose of this study was to investigate the effects of alloying and rolling condition on the mechanical properties and to develop high strength line pipe steels with good toughness. Tests were carried out by the laboratory experiments followed by mill trials and mass production. It was found that a small addition of microalloying elements, such as Nb, V with Mo or Ti remarkably increased the strength and toughness of hot strips. The optimum condition of thermomechanical rolling on low carbon microalloyed steel improved the toughness through the formation of a fine and uniform microstructure. Based on this mill trials following the fundamental research, the production technology of line pipe steels, grade X70∼X100 with high toughness, has been established. These grade steels exhibit excellent low temperature toughness (vTs= under -80$^{\circ}C$) and sufficient strength in both the base metal and the ERW seam weld position, respectively.

  • PDF

Analysis of Residual Stresses for the Multipass Welds of 316L Stainless Steel Pipe by Neutron Diffraction Method (중성자 회절법에 의한 316L 스테인리스강 배관 다층용접부의 잔류응력 해석)

  • 김석훈;이재한
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.64-70
    • /
    • 2003
  • Multipass welds of the 316L stainless steel have been widely employed in the pipes of Liquid Metal Reactor. Owing to localized heating and subsequent rapid cooling by the welding process, the residual stress arises in the weld of the pipe. In this study, the residual stresses in the 316L stainless steel pipe welds were calculated by the finite element method using ANSYS code. Also, the residual stresses both on the surface and in the interior of the thickness were measured by HRPD(High Resolution Powder Diffractometer) instrumented in HANARO Reactor. The experimental data and the calculated results were compared and the characteristics of the distribution of the residual stress discussed.