• Title/Summary/Keyword: metal membrane

Search Result 635, Processing Time 0.021 seconds

A Study on the Validity of the Metal Filter Application in MBR Process (MBR 시스템에서의 금속필터 적용타당성 연구)

  • Lee, Min Soo;Lee, Kang Hoon;Lee, Yong Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.66-73
    • /
    • 2022
  • In this study, a method for stabilizing treated water was conducted while maintaining high flux using a metal flat membrane module made of stainless steel. This module had a pore size of 13 ㎛, so it was possible to operate at a high flux from 60 LMH to 100 LMH. However, although SS leaked about 30~50 ppm during initial operation, aggregation was possible because SS acted as aggregation nucleus. While polymer membrane permeate does not have aggregation nucleus, so coagulation is possible but not flocculation. Typically clay or bentonite, which is used as aggregation nucleus, is additionally administered. In this study, the total phosphorus treatment and the quality of the treated water were to promote stability because flocculation was achieved only with SS leakage without the need for such a aggregation nucleus. Finally, the feasibility of operating a metal membrane filter capable of high flux in stable treated water to be applied to the MBR system.

Study on Morphology Control of Polymeric Membrane with Clathrochelate Metal Complex (Clathrochelate계 금속 착물을 이용한 고분자 멤브레인 구조 제어)

  • Kim, Nowon;Jung, Boram
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.472-483
    • /
    • 2014
  • This study is preparation of microporous membranes by using macrocyclic metal ion complexes and extended cage complexes. It is a more favorable way to existing methods because polymer and metal ion-ligand complex system provides a fine control over the phase transition behavior. Chemical functionalization of the polar surface can be obtained. Metal-templated condensation of cyclohexanedione dioxime, hydroxyphenylboronic acid in the presence of metal salts proceeds cleanly in methanol to furnish the metal clathrochelate complexes. Organic/inorganic hybrid membranes were prepared with polyethersulfone (PES), polyvinylpyrrolidone (PVP), ethyleneglycol butyl ether (BE), metal clathrochelate s and DMF by using nonsolvent induced phase inversion method. The structure of membranes was characterized with scanning electron microscopy (SEM) and microflow permporometer. The addition of Fe(II) clathrochelate complex with p-hydroxyphenyl group leads to changes of membrane morphology such as narrow mean pore size distribution, increase of surface pore density and decrease of the largest pore size.

Prediction evaluation of problems happened of Sheet Metal Forming Process Using Shell Element (쉘 요소를 이용한 박판성형공정의 불량 예측 평가)

  • Ko Hyung-Hoon;Lee Chan-Ho;Kang Dong-Kyu;Sul Nam-Ki;Lee Kwang-Sik;Jong Dong-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.481-484
    • /
    • 2005
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its time effectiveness. However, it's well known that the membrane analysis can not provide correct information for the processes which have considerable bending effects. In this research it tried to compare the analysis results which use the shell element which is applied newly in the AutoForm commercial software with actual experimental results. The shell element is compromise element between continuum element and membrane element. The Finite element method by using shell element is the most efficient numerical method. From this research, it is known that FEA by using shell element can predict accurately the problems happened in actual experimental auto-body panel.

  • PDF

Micro-Filtration Performance of Metal Membrane md Fouling Reduction by Intermittent Ozonation (금속 막의 정밀 여과 특성 및 간헐적 오존 처리에 의한 막 오염 저감)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.66-74
    • /
    • 2004
  • Total resistance of membrane in a micro-filtration system using a metal membrane was mainly attributed to the permeate resistance of cake layer($R_c$), which was formed by deposited particles from the physico-chemical interactions of solids on membrane surface. Intermittent back ozonation was highly effective than the air backwashing for fouling reduction. As far the operational effect, under same ozone injection, the increase of gas flow-rate was more favorable than the increase of injection time far the recovery of permeation flux. As the filtration time was longer, the effect of flux recovery by intermittent back-ozonation decreased. Therefore, it is preferable to operate membrane cleaning before the foulant is consolidated on membrane surface.

A Study of Alginic acid Membrane for the Separation of Water-Alcohol Mixtures (물-알코올 혼합물의 분리를 위한 알긴산막에 관한 연구)

  • 박상우;오재완정봉우김춘영
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.200-208
    • /
    • 1993
  • As a separation membrane for water-ethanol mixtures, alginic acid has been used which is hydrophilic polysaccharide and has excellent bonding capacity with divalent metal ions. Pervaporation characteristics of the alginic acid membrane were examined. The membrane was crosslinked with metal ions for the improvement of mechanical strength and chemical affinity. And its pervaporation characteristics were investigated. The first group(I A) metal complexed membrane cannot be used because of their brittleness and excessive swelling in low concentrations of ethanol solution. But the permeation characteristics of other metal complexed membrane were more improved than that of the alginic acid membrane because of their contraction of the membrane and hydrophilic property of metal ion.

  • PDF

Development of Thiourea-Formaldehyde Crosslinked Chitosan Membrane Networks for Separation of Cu (II) and Ni (II) Ions

  • Sudhavani, T.J.;Reddy, N. Sivagangi;Rao, K. Madhusudana;Rao, K.S.V. Krishna;Ramkumar, Jayshree;Reddy, A.V.R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1513-1520
    • /
    • 2013
  • Novel chitosan (CS) based membrane networks were developed by solution casting and followed by crosslinking with different crosslinkers such as glutaraldehyde, urea-formaldehyde, and thiourea-formaldehyde. The developed membrane networks were designated as CS-GA, CS-UF and CS-TF. Crosslinking reaction of CS membranes was confirmed by Fourier transform infrared spectroscopy. Membrane rigidity and compactness were studied by the differential scanning calorimetry. The surface morphology of CS membranes was characterized by scanning electron microscopy. The sorption behaviour with respect to contact time, initial pH and initial metal ion concentration were investigated. The maximum adsorption capacity of CS-GA, CS-UF and CS-TF sorbents was found to be 1.03, 1.2 and 1.18 mM/g for $Cu^{2+}$ and 1.48, 1.55 and 2.18 mM/g for $Ni^{2+}$ respectively. Swelling experiments have been performed on the membrane networks at $30^{\circ}C$. Desorption studies were performed in acid media and EDTA and it was found that the membranes are reusable for the metal ion removal for three cycles. The developed membranes could be successfully used for the separation of $Cu^{2+}$ and $Ni^{2+}$ metal ions from aqueous solutions.

Tuning the surface charge of mixed matrix membranes using novel chemistry

  • Priyanka Mistry;C.N. Murthy
    • Membrane and Water Treatment
    • /
    • v.15 no.3
    • /
    • pp.139-152
    • /
    • 2024
  • Mixed matrix membranes have gained significant recognition in the wastewater treatment industry for their effectiveness in removing dyes, proteins, and heavy metals from water sources. Researchers have developed an innovative technique to enhance properties of these membranes by incorporating amine-functionalized carbon nanotubes into the polymer matrix. This approach introduces amine functional groups onto the membrane surface, which are then modified with trimesoyl chloride and cyanuric chloride. The modified membranes are characterized by XPS to confirm successful bonding of amines with the trimesoyl chloride and cyanuric chloride. The surface charge of the modified membrane also plays a role in the modification process; the membrane modified with trimesoyl chloride has a negative surface charge, while the one modified with cyanuric chloride has a more positive charge. At the same acidic pH, the positive or negative charge of the mixed matrix membranes assists in enhancing the rejection of heavy metals. This results in improved antifouling properties for both modified membranes. The heavy metal rejection for all modified membranes is higher than for unmodified membranes, due to both adsorption and complexation abilities of the functional groups on the membrane surface with heavy metal ions. As the membrane surface functionalities increase through modification, the separation due to complexation also increases. The bulk morphology of the membrane remains unchanged, while roughness slightly increases due to the surface treatment.

Determination of the Formation Constants of Metal Complexes with Organic Acids by Adsorption Method (흡착법에 의한 금속이온과 유기산간의 착염 생성계수의 측정법)

  • Jae, Won-Mok
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.4
    • /
    • pp.199-203
    • /
    • 1971
  • The adsorption method for the determination of the formation constants of the metal complexes with organic acids was developed by using membrane filters. The adsorption method involved the measurements of radioactivities of the adsorbed metal on membrane filters and the filtrate solution after the radioactive metal ion were filtered through membrane filters in the presence of organic ions of varying concentration. Comparing the adsorption method with the ion exchange method, it was seen that the adsorption method was simpler and faster than the ion exchange method. As an example of the metal complex with organic acid yttrium citrate complex was chosen, and the formation constant of the complex obtained by the adsorption method showed $K_f=2.0{\times}10^{-4}(l. mole^{-1})$ at a pH of 7. Also the present study revealed that the carrierfree state of yttrium in aqueous solution was present in the completely ionized state.

  • PDF

Preparation of Polymer-Metal Complexed Membranes using Ethylcellulose and Metal salts, and Their Characteristics of Gas Separation. (Ethylcellulose와 금속염을 이용한 고분자-금속 착체막의 제조 및 기체투과특성)

  • 변홍식;서성호;박병규;홍병표;백승욱;박영규
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.200-209
    • /
    • 2003
  • Polymer-metal complexed membranes were prepared by solvent evaporation method using ethylcellulose, platinum(II)acetylacetonate, and rhodium(III)acetylacetonate. The various composition of metal salt(0.3-4.0 wt%) were employed to obtain the optimum performance of final membrane. EC-metal complexed membranes were characterized by FTIR and scanning electron microscopy(SEM) to observe the morphology and the performance of oxygen, nitrogen, carbon dioxide, and methane gases was tested. It was shown that the metal salts enhanced the permeability of all gases without decrease of selectivity. However, it was found that Pt had more effects on the permeability of oxygen and nitrogen gases while Rh had more effects on the permeability of carbon dioxide and methane gases. EC-Pt complexed membrane(Pt 1.0 wt%) even showed the enhanced selectivity of oxygen/nitrogen(37%) due to the affinity characteristic of Pt to oxygen.

A Study on the Fabrication of a Membrane Type Micro=Actuator Using IPMC(Ionic Polymer-Metal Composite) for Micro-Pump Application (마이크로 펌프 응용을 위한 이온성 고분자-금속 복합체를 이용한 멤브레인형 마이크로 액추에이터 제작에 관한 연구)

  • 조성환;이승기;김병규;박정호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.298-304
    • /
    • 2003
  • IPMC(Ionic Polymer-Metal Composite) is a highly sensitive actuator that shows a large deformation in presence of low applied voltage. Generally, IPMC can be fabricated by electroless plating of platinum on both sides of a Nafion (perfluorosulfonic acid) film. When a commercial Nafion film is used as a base structure of the IPMC membrane, the micro-pump structure and the IPMC membrane are fabricated separately and then later assembled, which makes the fabrication inefficient. Therefore, fabrication of an IPMC membrane and the micro-pump structure on a single wafer without the need of assembly have been developed. The silicon wafer was partially etched to hold liquid Nafion to be casted and a 60-${\mu}{\textrm}{m}$ thick IPMC membrane was realized. IPMC membranes with various size were fabricated by casting and they showed 4-2${\mu}{\textrm}{m}$ displacements from $4mm{\times}4mm$ , $6mm{\times}6mm$, $8mm{\times}8mm$ membranes at the applied voltage ranging from 2Vp-p to 5Vp-p at 0.5Hz. The displacement of the fabricated IPMC membranes is fairly proportional to the membrane area and the applied voltage.