DOI QR코드

DOI QR Code

Development of Thiourea-Formaldehyde Crosslinked Chitosan Membrane Networks for Separation of Cu (II) and Ni (II) Ions

  • Sudhavani, T.J. (Department of Chemistry, Yogi Vemana University) ;
  • Reddy, N. Sivagangi (Department of Chemistry, Yogi Vemana University) ;
  • Rao, K. Madhusudana (Department of Chemistry, Sri Krishnadevaraya University) ;
  • Rao, K.S.V. Krishna (Department of Chemistry, Yogi Vemana University) ;
  • Ramkumar, Jayshree (Analytical Chemistry Division, Bhabha Atomic Research Centre) ;
  • Reddy, A.V.R. (Analytical Chemistry Division, Bhabha Atomic Research Centre)
  • Received : 2013.01.02
  • Accepted : 2013.02.26
  • Published : 2013.05.20

Abstract

Novel chitosan (CS) based membrane networks were developed by solution casting and followed by crosslinking with different crosslinkers such as glutaraldehyde, urea-formaldehyde, and thiourea-formaldehyde. The developed membrane networks were designated as CS-GA, CS-UF and CS-TF. Crosslinking reaction of CS membranes was confirmed by Fourier transform infrared spectroscopy. Membrane rigidity and compactness were studied by the differential scanning calorimetry. The surface morphology of CS membranes was characterized by scanning electron microscopy. The sorption behaviour with respect to contact time, initial pH and initial metal ion concentration were investigated. The maximum adsorption capacity of CS-GA, CS-UF and CS-TF sorbents was found to be 1.03, 1.2 and 1.18 mM/g for $Cu^{2+}$ and 1.48, 1.55 and 2.18 mM/g for $Ni^{2+}$ respectively. Swelling experiments have been performed on the membrane networks at $30^{\circ}C$. Desorption studies were performed in acid media and EDTA and it was found that the membranes are reusable for the metal ion removal for three cycles. The developed membranes could be successfully used for the separation of $Cu^{2+}$ and $Ni^{2+}$ metal ions from aqueous solutions.

Keywords

References

  1. Chen, J. P.; Wang, L. Chemosphere 2004, 54, 397. https://doi.org/10.1016/S0045-6535(03)00714-8
  2. Rabelo, R. B.; Vieira, R. S.; Luna, M. T.; Guibal, E.; Beppu, M. M. Ads. Sci. Technol. 2012, 30, 1. https://doi.org/10.1260/0263-6174.30.1.1
  3. Jain, C. K.; Singhal, D. C.; Sharma, M. K. J. Hazard. Mater. 2004, 114, 231. https://doi.org/10.1016/j.jhazmat.2004.09.001
  4. Rocha de Castro G.; Luiz de Alcantara, I.; Paulo dos Santos, R. Mater. Res. 2004, 7, 329. https://doi.org/10.1590/S1516-14392004000200018
  5. Price, P. M.; Clark, J. H.; Macquarrie, D. J. J. Chem. Soc. Dalton Trans. 2000, 2, 101.
  6. Ozkan, D.; Mahir, A.; Mehmet, D.; Yasemin, T.; Hilmi, N.; P nar, T. Journal of Hazardous Materials 2007, 149, 650. https://doi.org/10.1016/j.jhazmat.2007.04.036
  7. Jin, L.; Bai, R. Langmuir 2002, 18, 9765. https://doi.org/10.1021/la025917l
  8. Vasconcelos, H. L.; Guibal, E.; Laus, R.; Vitali, L.; Favere, V. T. Mater. Sci. Eng., C 2009, 29, 613. https://doi.org/10.1016/j.msec.2008.10.022
  9. Kong, Y. S.; Bolan, N.; Lombi, E.; Skinner, W.; Guibal, E. Crit. Rev. Env. Sci. Technol. 2013, in press.
  10. Nalini, S.; Ajit, K. S.; Rashmi, S. J. Hazard. Mater. 2007, 148, 353. https://doi.org/10.1016/j.jhazmat.2007.02.043
  11. Vieira, R. S.; Oliveira, M. L.; Guibal, E.; Rodriguez-Castellon, E.; Beppu, M. Colloids Surf. Sci. A 2011, 374, 108. https://doi.org/10.1016/j.colsurfa.2010.11.022
  12. Marguerite, R. Prog. Polym. Sci. 2006, 31, 603. https://doi.org/10.1016/j.progpolymsci.2006.06.001
  13. Sun, S.; Wang, A. Sep. Purif. Technol. 2006, 51, 409. https://doi.org/10.1016/j.seppur.2006.03.004
  14. Pradip, K. D.; Joydeep, D.; Tripathi, V. S. J. Sci. Ind. Res. 2004, 63, 20.
  15. Krishna Rao, K. S. V.; Madhusudana Rao, K.; Nagendra Kumar, P. V.; Chung, I. D. Iran Polym. J. 2010, 19, 265.
  16. Zuoying, C.; Huacai, G.; Shengli, L. Eur. Polym. J. 2001, 37, 2141. https://doi.org/10.1016/S0014-3057(01)00070-2
  17. Santos Sopena, L. A.; Ruiz, M.; Pestov, A. V.; Sastre, A. M.; Yatluk, Y.; Guibal, E. Cellulose 2011, 18, 309. https://doi.org/10.1007/s10570-010-9469-8
  18. Ngah, W. S. W.; Endud, C. S.; Mayanar, R. React. Funct. Polym. 2002, 50, 181. https://doi.org/10.1016/S1381-5148(01)00113-4
  19. Vijaya, Y.; Srinivasa Popuri, R.; Veera Boddu, M.; Krishnaiah, A. Carbohyd. Polym. 2008, 72, 261. https://doi.org/10.1016/j.carbpol.2007.08.010
  20. Kannamba, B.; Laxma Reddy, K.; Appa Rao, B. V. J. Hazard. Mater. 2010, 175, 939. https://doi.org/10.1016/j.jhazmat.2009.10.098
  21. Monier, M.; Ayad, D. M.; Wei, Y.; Sarhan, A. A. J. Hazard. Mater. 2010, 177, 962. https://doi.org/10.1016/j.jhazmat.2010.01.012
  22. Jian, H. C.; Hua, L.; Zheng, H. L.; Ya, S. H.; Guo, P. L. Desalination 2011, 277, 265. https://doi.org/10.1016/j.desal.2011.04.040
  23. Kyzas, G. Z.; Kostoglou, M.; Lazaridis, N. K. Chem. Eng. J. 2009, 152, 440. https://doi.org/10.1016/j.cej.2009.05.005

Cited by

  1. Aminothiozolyl maleamic acid based multi chelating hydrogels for the separation of uranium (VI) ions from aqueous environment vol.27, pp.10, 2016, https://doi.org/10.1002/pat.3799
  2. Table of contents vol.57, pp.14, 2013, https://doi.org/10.1080/19443994.2015.1008053
  3. Issue Information ‐ TOC vol.27, pp.10, 2013, https://doi.org/10.1002/pat.3670