• Title/Summary/Keyword: metal ion effect

Search Result 512, Processing Time 0.033 seconds

Effect of Ancillary Ligand, Phenyl group, on the Emission Spectrum of Pt(II) Complex Useful for Organic Light-Emitting Device (유기전기발광소자에 사용될 수 있는 백금 착물에 대해 보조리간드 phenyl 기가 발광스펙트럼에 미치는 영향)

  • Lee, Seung-Hee;Lee, Ho-Joon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.265-268
    • /
    • 2008
  • Among the efforts to increase the efficiency of organic light-emitting device (OLED), there is a way: doping phosphorescent materials. As a phosphorescent material, complexes of heavy transition metal, platinum, were synthesized. $Cl^-$ ion and phenyl group were used as ancillary ligands with 2-(2-pyridyl)benzimidazole (pbi) as a chromophore. The complexes were analysed by FAB-mass spectrometer and absorption and emission spectra were obtained. A phenyl group was able to shift the emission band of the complex even if it's not a chromorphore.

The effect of metal composition on the structure and properties of Ti-Cu-N superhard nanocomposite coatings

  • Myung, Hyun S.;Lee, Hyuk M.;Han, Jeon G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.429-434
    • /
    • 2001
  • Ti-Cu-N nanocomposite films deposited by arc ion plating and magnetron sputter hybrid system with various copper contents. The microstructure and mechanical properties of Ti-Cu-N superhard nanocomposite films depend on the Cu concentration. In X-ray diffraction (XRD) analysis, intensity of TiN (111) and TiN (220) peak decreased and peak broadness increased with increasing the copper contents and Cu peak was not detected. The grain size of films decreased with increasing at%Cu and Transmission Electron Microscopy (TEM) analysis also showed that Ti-Cu-N film containing 1.5at%Cu was composed of very fine (<10nm) nanocrystalline grains. The maximum hardness of Ti-Cu-N (1.5at%Cu) film reached to 45GPa and friction coefficient was measured 0.3.

  • PDF

Study on Optical Characteristics of 8-Hydroxyquinoline Synthesized Derivative as Sensing Material of the Fiber-Optic Copper Ion Sensor in Aqueous Environment (수질환경에서 광섬유 센서의 구리 이온 감지 물질로서 8-Hydroxyquinoline 합성유도체의 광학적 반응 특성 연구)

  • Kim, Beom Kyu;Park, Byung Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.100-105
    • /
    • 2017
  • An 8-hydroxyquinoline compound that was synthesized with 8-hydroxyquinoline-2-carboxaldehyde and 4-aminoantipyrine was investigated for use as the sensing material of a fiber-optic copper ion sensor in an aqueous environment. The experiment was conducted with a fiber-optic measurement system, in order to evaluate the relationship between the absorbance peak and copper ion concentration. The synthesized derivative exhibited a (highly selective) chromogenic phenomenon for copper ions among various metal ions in an aqueous environment and showed a specific absorbance peak at a wavelength of 530 nm for copper ions. The effect of mercury ions was investigated to evaluate the selectivity of the prepared synthesized derivatives toward Cu ions. The absorbance was measured at various concentration ratios of Cu and Hg ions (Cu:Hg ratios from 0.05 to 20), and it was found that the absorbance at 530 nm tended to increase with increasing Cu ion concentration. The experimental results also showed the linear relationship between the logarithmic concentration of copper ions and the specific absorbance peak at a wavelength of 530 nm. These results indicate that the synthesized 8-hydroxyquinoline compound has selectivity for copper ions and can be used as a sensing material for fiber-optic copper ion sensors.

Ion Transmittance of Anodic Alumina for Ion Beam Nano-patterning (이온빔 나노 패터닝을 위한 양극산화 알루미나의 이온빔 투과)

  • Shin S. W.;Lee J-H;Lee S. G.;Lee J.;Whang C. N.;Choi I-H;Lee K. H.;Jeung W. Y.;Moon H.-C.;Kim T. G.;Song J. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2006
  • Anodic alumina with self-organized and ordered nano hole arrays can be a good candidate of an irradiation mask to modify the properties of nano-scale region. In order to try using porous anodic alumina as a mask for ion-beam patterning, ion beam transmittance of anodic alumina was tested. 4 Um thick self-standing AAO templates anodized from Al bulk foil with two different aspect ratio, 200:1 and 100:1, were aligned about incident ion beam with finely controllable goniometer. At the best alignment, the transmittance of the AAO with aspect ratio of 200:1 and 100:1 were $10^{-8}\;and\;10^{-4}$, respectively. However transmittance of the thin film AAO with low aspect ratio, 5:1, were remarkably improved to 0.67. The ion beam transmittance of self-standing porous alumina with a thickness larger than $4{\mu}m$ is extremely low owing to high aspect ratio of nano hole and charging effect, even at a precise beam alignment to the direction of nano hole. $SiO_2$ nano dot array was formed by ion irradiation into thin film AAO on $SiO_2$ film. This was confirmed by scanning electron microscopy that the $SiO_2$ nano dot array is similar to AAO hole array.

Antioxidant and Antibacterial Effects of Korean Isodon japonicus H. (한국산 연명초(延命草)(Isodon japonicus Hara)의 항산화, 항균효과)

  • An, Bong-Jeun;Park, Jung-Mi;Bae, Ho-Jung;Pyun, Jeong-Ran;Song, Mi-Ae
    • Applied Biological Chemistry
    • /
    • v.49 no.2
    • /
    • pp.129-134
    • /
    • 2006
  • Biological activities and application of Isodon japonicus H. were investigated. In the physiological activities, the electron donating ability (EDA) was 66.3% in 100 ppm and SOD-like activity was as high as 85.0% in 1,000 ppm with gradual increase. As for the inhibitory effect of xanthine oxidase, it was 70.0% in 1,000 ppm and as low as 40.0% in 500 ppm; also, as for the inhibitory effect of tyrosinase, it was as low as 20.5% below 1,000 ppm. The tyrosinase inhibition effect related to skin whitening function showed 30.0% at 1,000 ppm level or below, indicating a relatively low effect. As for the result of measuring the lipid oxidation, all the concentrations of medical ion treatments showed anti-acidification ability; also, as for the metal ion blocking effects against the lipid oxidation promoting factors $(Fe^{2+}\;and\;Cu^{2+})$, $Fe^{2+}$ was better than $Cu^{2+}$ and all concentrations of medical ion treatments was 60.0% in 100 ppm. Also, the clear zone against various bacteria at 0.5 and 1.0 mg/disc was clearly shown. When it was applied into a normal skin-softener, it was safe, showing its potential as a natural material of cosmetics.

Microfluidic Fabrication of Conjugated Polymer Sensor Fibers (미세유동을 이용한 공액 고분자 센서 섬유 제작)

  • Yoo, Imsung;Song, Simon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.853-858
    • /
    • 2014
  • We propose a fabrication method for polydiacetylene (PDA)-embedded hydrogel microfibers on a microfluidic chip. These fibers can be applied to the detection of cyclodextrines (CDs), which are a family of sugar and aluminum ions. PDA, a family of conjugated polymers, has unique characteristics when used for a sensor, because it undergoes a blue-to-red color transition and nonfluorescence-to-fluorescence transition in response to environmental stimulation. PDAs have different sensing characteristics depending on the head group of PCDA. By taking advantage of ionic crosslinking-induced hydrogel formation and the 3D hydrodynamic focusing effect on a microfluidic chip, PCDA-EDEA-derived diacetylene (DA) monomer-embedded microfibers were successfully fabricated. UV irradiation of the fibers afforded blue-colored PDA, and the resulting blue PDA fibers underwent a phase transition to red and emitted red fluorescence upon exposure to CDs and aluminum ions. Their fluorescence intensity varied depending on the CDs and aluminum ion concentrations. This phase transition was also observed when the fibers were dried.

Performance of membrane filtration in the removal of iron and manganese from Malaysia's groundwater

  • Kasim, Norherdawati;Mohammad, Abdul Wahab;Abdullah, Siti Rozaimah Sheikh
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.277-296
    • /
    • 2016
  • The aim of this research was to investigate the ability of nanofiltration (NF) and ultrafiltration (UF) membranes as a filtration unit for groundwater treatment for drinking water resources. Commercial membranes denoted as TS40, TFC-SR3 and GHSP were used to study the performance based on rejections and fluxes. The investigation has been conducted using natural groundwater obtained from a deep tube well with initial concentration of iron (Fe) and manganese (Mn) at 7.15 mg/L and 0.87 mg/L, respectively. Experimental results showed that NF membranes exhibited higher fluxes than UF membrane with pure water permeability at 4.68, 3.99 and $3.15L.m^{-2}.h^{-1}.bar^{-1}$, respectively. For metal rejection, these membranes have performed higher removal on Fe with TS40, TFC-SR3 and GHSP membranes having more than 82%, 92% and 86% respectively. Whereas, removal on Mn only achieved up to 60%, 80% and 30%, for TS40, TFC-SR3 and GHSP membranes respectively. In order to achieve drinking water standard, the membranes were efficient in removing Fe ion at 1 and 2 bar in contrast with Mn ion at 4 and 5 bar. Higher rejection of Fe and Mn were achieved when pH of feed solution was increased to more than 7 as TFC-SR3 membrane was negatively charged in basic solution. This effect could be attributed to the electrostatic effect interaction between membrane material and rejected ions. In conclusion, this study proved that NF membrane especially the TFC-SR3 membrane successfully treated local groundwater sources for public drinking water supply in line with the WHO standard.

Solvent Effects on the Solvolysis of cis-$[Co(en)_2ClNO_2]^+$ Ion and Its Mechanism (cis-$[Co(en)_2ClNO_2]^+$ 착이온의 가용매 분해반응에 미치는 용매의 영향과 그 반응 메카니즘)

  • Jong-Jae Chung;Young-Ho Park
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.3-8
    • /
    • 1986
  • The investigation of the effect of solvent structure on the first-order solvolysis of cis-$[Co(en)_2ClNO_2]^+$ion has been extended to water + co-solvent mixtures where the co-solvents are glycerol, ethylene glycol, isopropyl alcohol and t-butyl alcohol. Rates of solvolysis have been evaluated by spectrophotometric method at temperature 25∼30$^{\circ}$C. The polarity of solvent has influence on the variation of rate constant. The non-linear plot of the rate constant in log scale versus $\frac{D-1}{2D+1}$ implies that change in solvent structure with composition plays an important role in determining the variation of rate constant. The linearity of the plot of the rate constant in log scale versus the Grundwald-Winstein Y factor confirms that the solvolysis is an Id-type process with considerable extension of the metal chloride bond in the transition state. In the Kivinen equation the slope of the plot of log k versus $log(H_2O)$ suggests that the solvolysis is also an Id-type process. The application of free energy cycle shows that the effect of solvent structure is greater in the transition state than in the initial state.

  • PDF

Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review (미생물막 형성을 막기 위한 살균 물질 함유 막: 총설)

  • Son, Soohyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Bacteria grow biofilm on various surface such as separation membrane, food packaging film and biomedical device. Growth of biofilm is associated with the formation of a complex structure of exopolysaccharides. Effect of antibacterial effect reduce drastically once the biofilm developed due to the difficulties in mass transport of antimicrobial agent. In order to enhance the antibacterial activity, surface of the membrane is modified, coated or immobilized with functional materials with biocidal properties. One of the idea is to introduce positive charge on the membrane surface by the presence of quaternary ammonium group which might displace divalent metal ion such as magnesium or calcium present in the bacteria cell wall. Efficacy of cell membrane disruption depends on the mobility of the agents available directly on the surface environment. In this review, various biocidal agents like quaternary ammonium group, helamine or zwitter ion containing membrane are discussed.

Effect of Transition Metal Ion on the Reaction of Benzylbromide with Grignard Reagent (Grignard 시약과 브로모벤질과의 반응에서 첨가전이 금속이온의 영향 연구)

  • Jack C. Kim;Young-Sim Koh;Ung-Chan Yoon;Min-Sook Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.228-236
    • /
    • 1993
  • The effect of ferric ion on the reaction of CH_3$MgI with benzylbromide was investigated by determining the product ratio between cross-coupling product, ethylbenzene (A) and homocoupling product, bibenzyl (B) in the presence of ferric ion. When CH_3$MgI prepared with pure magnesium was used, the ratio of A to B was 22 to 78 and with reagent grade magnesium, the ratio became 33 to 67 indicating that metallic impurities in magnesium affect the reaction mechanism to lead less homocoupling product, B. The ratio changes became significant when ferric chloride was added in the reaction mixture in catalytic amounts and the ratio of A to B reached to 80 to 20 at maximum. The reaction in the presence of ferric ion seems to follow mainly an ionic mechanism which involves iron-benzyl bromide ${\pi}$-complex formation. The complex formation is expected to be able to enhance ionic attack of CH_3$MgI on benzyl carbon to give more A.

  • PDF