• Title/Summary/Keyword: metal electrode

Search Result 1,297, Processing Time 0.026 seconds

Metal Transfer Characteristics of Aluminium under Pulsed Current Metal Inert Gas Welding (알루미늄의 펄스 전류 미그 용접)

  • 최재호;최병도;김용석
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.127-133
    • /
    • 2002
  • In this study, metal transfer characteristics in pulsed current metal inert gas (MIG) welding of aluminum was investigated. Based on the metal transfer characteristics from direct current electrode negative MIG welding, the one drop per one pulse(ODOP) condition was predicted and compared with experimental data. The results indicated that experimental pulse range for the ODOP condition is wider than that predicted from the DCEP MIG welding data. In addition, more stable metal trnasfer behavior was obtained at the higher end of the ODOP condition.

Potentiometric Response of Chitin - based Membrane Electrode to various Metal cations (키틴 막 전극의 양이온에 대한 감응 연구)

  • Choi, Bun-Hong;Yun, Young-Ja
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.235-242
    • /
    • 1998
  • Membrane electrode based on chitin(po1y-[$1{\rightarrow}4$]-${\beta}$-N-acetyl-D-glucosamine) was prepared by mixing uniformly grounded of chitin (100 mesh) with PVC and DOS. We investigated the potential response of chitin membrane electrode to metal ions. It was observed that the response slopes for $Cd^{2+}$(34.9 mV/decade) and $Cu^{2+}$(34.0 mV/decade) were larger than those for other ions in pH 4 acetate buffer. The potentiometric response of chitin electrode to varying pH was nearly constant in the pH range of 2~12.

  • PDF

Fabrication of AIN-based FBAR Devices by Using a Novel Process and Characterization of Their Frequency Response Characteristics in terms of Various Electrode Metals (새로운 공정을 이용한 AIN 체적 탄성파 소자의 제작 및 다양한 금속 전극막에 따른 주파수 응답 특성 분석)

  • Kim, Bo-Hyun;Park, Chang-Kyun;Park, Jin-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.915-920
    • /
    • 2007
  • AIN-based film bulk acoustic resonator (FBAR) devices which adopt a membrane-type configuration such as Mo/AIN/bottom-metal/Si are fabricated by employing a novel process. The proposed resonator structure does not require any supporting layer above the substrate, which leads to the reduction in energy loss of the resonators. For all the FBAR devices, the frequency response characteristics are measured and the device parameters, such as return loss and input impedance, are extracted from the frequency responses, and analyzed in terms of the various metals such as Al. Cu, Mo, W used in the bottom-electrode. The mass-loading effect caused by the used bottom-electrode metals is found to be the main reason for the difference revealed in the measured characteristics of the fabricated FBAH devices. The results obtained in this study also show that the degree of match in lattice constant and thermal expansion coefficient hetween piezoelectric layers and electrode metals is crucial to determine the device performance of FEAR.

2D Layered Ti3C2Tx Negative Electrode based Activated Carbon Woven Fabric for Structural Lithium Ion Battery (카본우븐패브릭 기반 2D 구조의 Ti3C2Tx 배터리음극소재)

  • Nam, Sanghee;Umrao, Sima;Oh, Saewoong;Oh, Il-Kwon
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.296-300
    • /
    • 2019
  • Two dimensional transition metal carbides and/or nitrides, known as MXenes, are a promising electrode material in energy storage due to their excellent electrical conductivity, outstanding electrochemical performance, and abundant functional groups on the surface. Use of $Ti_3C_2$ as electrode material has significantly enhanced electrochemical performance by providing more chemically active interfaces, short ion-diffusion lengths, and improved charge transport kinetics. Here, we reports the efficient method to synthesize $Ti_3C_2$ from MAX phase, and opens new avenues for developing MXene based electrode materials for Lithium-Ion batteries.

Comparison Study of Compact Titanium Oxide (c-TiO2) Powder Electron Transport Layer Fabrication for Carbon Electrode-based Perovskite Solar Cells (탄소전극 기반 페로브스카이트 태양전지 적용을 위한 조밀 이산화티타늄 분말 전자수송층 제작 비교 연구)

  • Woo, Chae Young;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.297-302
    • /
    • 2022
  • This study compares the characteristics of a compact TiO2 (c-TiO2) powdery film, which is used as the electron transport layer (ETL) of perovskite solar cells, based on the manufacturing method. Additionally, its efficiency is measured by applying it to a carbon electrode solar cell. Spin-coating and spray methods are compared, and spray-based c-TiO2 exhibits superior optical properties. Furthermore, surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) exhibits the excellent surface properties of spray-based TiO2. The photoelectric conversion efficiency (PCE) is 14.31% when applied to planar perovskite solar cells based on metal electrodes. Finally, carbon nanotube (CNT) film electrode-based solar cells exhibits a 76% PCE compared with that of metal electrode-based solar cells, providing the possibility of commercialization.

Effect of Moisture in Arc Welding Electrode on Mechanical Properties of Weld Metal (아아크 용접봉 피복제 의 함수량 이 용접금속 의 기계적 성질에 미치는 영향)

  • 윤희만;김연식;박종은
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.30-40
    • /
    • 1984
  • Moisture content in the coating of an electrode is known to cause defects such as porosities, fish eyes and cracks in the weld metal, however, quantitative relationship between them is not clearly understood. In this study widely consumed and the most common type of arc welding rods such as ilmenite and low hydrogen type were chosen for the investigation, and attempts were made to correlate the relationship between the mechanical properties and gas contents when welding was carried out with electrodes of various moisture contents. As the relative humidity changed from 70% to 92%, it was determined that moisture content to reach saturation was in the range of 0.6~6.8%. As the moisture content in the electrode coating was increased, the amount of gaseous components (H, O, N) in the weld metal was accordingly increased, especially diffusible hydrogen showed prominent effect, i.e. it increased proportionally to the increase of the moisture content. The mechanical properties of the weld metal was observed to become more inferior as the diffusible hydrogen was greater. It was determined for ilmenite type of electrode that the increase of hydrogen content was approximately 1.8ml per unit weight percent increase of moisture and also tensile strength resulted lowering from $45.3kg/\textrm{mm}^2$ to $42.7kg/\textrm{mm}^2$ as moisture content increased from 0.7% to 6.8%. For low hydrogen type the increase of the hyrogen was about 2.4ml per unit percent of moisture and tensile strength decreased from $63.0kg/\textrm{mm}^2$ to $53.8kg/\textrm{mm}^2$ particularly in the region of moisture content 0.1~4.2%.

  • PDF

Removal of Heavy Metal Ions by Electrocoagulation for Continuous Use of Fe2+/Fe3+-Mediated Electrochemical Oxidation Solutions

  • Jung, Youn-Su;Pyo, Myoung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.974-978
    • /
    • 2008
  • Removal of heavy metal ions ($Cd^{2+}$ and $Zn^{2+}$) by electrocoagulation (ECG) was investigated in an acidic condition, which is necessary for re-using or discharging the mediated electrochemical oxidation (MEO) media. Effects of various parameters such as electrolytes, current densities, and electrode materials were examined for a metal-contaminated MEO system using $Fe^{2+}/Fe^{3+}$ pairs as a mediator. It was found that ECG with Al electrodes is greatly affected by the presence of $Fe^{2+}$. [$Cd^{2+}$] and [$Zn^{2+}$] remain constant until [$Fe^{2+}$] reaches a certain concentration level (ca. 10 mM). This preferential removal of $Fe^{2+}$ during ECG with Al electrodes is not alleviated by controlling current densities, potential programs, and solution mixing. ECG with Fe electrodes, on the other hand, resulted in relatively fast removal of $Cd^{2+}$ and $Zn^{2+}$ under coexistence of $Fe^{2+}$, indicative of the different role between $Fe^{n+}$ generated from an electrode and $Fe^{2+}$ initially present in a solution. When ECG was performed with Fe electrodes until [$Fe^{n+}$] became the same as the concentration of initially present $Fe^{2+}$, [$Cd^{2+}$] and [$Zn^{2+}$] were reduced to one-tenth of the initial concentrations, suggesting the possibility of a continuous use of the medium for a subsequent MEO process.

Effect of the Surface Electrode Formation Method and the Thickness of Membrane on Driving of Ionic Polymer Metal Composites (IPMCs) (표면전극 형성 방법과 이온-교환막 두께가 이온성 고분자-금속 복합체(IPMC) 구동에 미치는 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.471-477
    • /
    • 2006
  • Ion exchange metal composite(IPMC) has toughness equivalent to the range of human's muscle, transformation-actuation force by relatively low voltage and the fast response time. Thus, as a new method for preparing thicker IPMC, the solution casting method to make the films of various thicknesses out of liquid nation was attempted in this study. To reduce the surface resistance of electrode, the first plated electrode prepared by Oguro method was replated with Au and Ir using ion beam assisted deposition(IBAD). The microstructures of electrode surfaces before and after IBAD plating were investigated using SEM. The change of water and ion-conductivity in IPMC were measured under applied voltage. The displacement and driving force of IPMCs with various thicknesses were measured to evaluate the driving properties.

Evaluation of Field Application and Optimum Operational Condition for Heavy Metals Analysis Using Environment-Friendly Bismuth Film Electrode (친환경 비스무스 필름 전극을 이용한 중금속 분석 최적조건 도출 및 현장 적용성 평가)

  • Kim, So-Youn;Yang, Yong-Woon;Jeon, Sook-Lye
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • This study was conducted to establish the optimal electrolyte and bismuth concentrations using bismuth film electrode in laboratory and to confirm the possibilities of using this operational condition for heavy metals monitoring in field. In lab test, heavy metal measurement was not accurate more than 600 ppb when heavy metal (Pb, Cd, Zn) range 100~1,000 ppb was measured with bismuth 2,000 ppb. So, bismuth and heavy metal was reacted about 1:1 with ASV method. In electrolyte test, 0.1 M acetate buffer (pH 4.5), 0.1 M chloroacetate buffer (pH 2.0), 0.1 M HCl (pH 2.0), 0.1 M $HNO_3$ (pH 2.0) was tested. As a results, 0.1 M acetate buffer was most suitable in ASV measurement with bismuth film electrode. In field application, Pb, Cd and Zn was measured respectively 36~45 ppb, 84~91 ppb, 90~98 ppb when heavy metal (Pb, Cd, Zn) 100 ppb was spiked in field sample. These results were identified of matrix effect in field sample, So relationship between heavy metal measurement and matrix effects will be studied.