• Title/Summary/Keyword: metal content

Search Result 1,494, Processing Time 0.03 seconds

Metal Biosorption by Surface-Layer Proteins from Bacillus Species

  • Allievi, Mariana Claudia;Florencia, Sabbione;Mariano, Prado-Acosta;Mercedes, Palomino Maria;Ruzal, Sandra M.;Carmen, Sanchez-Rivas
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified S-layers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of $Ca^{2+}$ and $Zn^{2+}$, but not of $Cd^{2+}$, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of S-layer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.

Characterization of Metal Composition in Spent Printed Circuit Boards of Mobile Phones (폐휴대폰 내의 인쇄회로기판에 함유된 금속 성분의 변화)

  • Jeong, jinki;Lee, Jae-chun;Choi, Jun-chul
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.76-80
    • /
    • 2015
  • Mobile phone has become one of the essential items in our daily life. In Korea, it is estimated that more than 20 million cell phones are discarded each year due to advancement in technology, thus creating disposal and environmental pollution. In order to conserve the resources, their proper recycling is essential as it contains both valuable and toxic metals. The economics of the recycling will depend on the amount and value of the metals. Therefore, it is necessary to determine the composition of the metals present in the different cell phones. In the present study, a report is presented on the variation of metal content per year of waste mobile phones. A review has been made for the mobile phones manufactured during the period 2000-2009 and metal content of the printed circuit boards (PCBs) by analyzing their metals. An example of the precious metal palladium and of the heavy metal lead shows the decreasing trend.

Evaluation of Heavy Metal Sources and Its Transfer and Accumulation to Crop in Agricultural Soils (농경지 토양의 중금속 오염원 및 농작물로의 중금속 전이·축적 평가)

  • Lim, Ga-Hee;Jo, Hun-Je;Park, Gyoung-Hun;Yun, Sung-Mi;Kim, Ji-In;Noh, Hoe-Jung;Kim, Hyun-Koo;Yoon, Jeong-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.3
    • /
    • pp.27-42
    • /
    • 2018
  • It is important to identify the contaminant sources and to evaluate the fate and transport of heavy metals to crops in agricultural lands. This study was conducted to evaluate metal sources and its transfer and accumulation to crop in agricultural soils. Pollution indices were calculated and multivariate analysis was performed to identify metal sources. To evaluate transfer and accumulation of metals to crops, the contents of phytoavailable metals were evaluated by using single extraction method and the correlation between metal content and soil properties was analyzed. Also the BCF was quantitatively evaluated for investigating the metal transition to each crop grown in the research area. As a result, Cr, Ni, and Co were expected to be mainly derived from geologic factors due to weathering of certain parent rocks. The content of nickel in soils of the research area was slightly higher than that of the concern level criteria based on total concentration, but the amount transferred and accumulated in the crops was actually low. Understanding the contamination characteristics by investigating the pollution sources of heavy metals and its transfer and accumulation to crops through various evaluation techniques could provide important information for proper management of the agricultural land.

A study on removing impurities in the zind bate for hot dip galvannealed coatings (합금화 용융아연 도금욕의 불순물 제거에 관한 연구)

  • 진영구
    • Journal of Surface Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.371-378
    • /
    • 1998
  • The zind bate contaminated in the hot dip galvannealed operation was successfully by appling the dross formation mechanism ; the Fe content was lowered from 0.028% to 0.011% and the dress size was decreased from 15~20$\mu\textrm{m}$ to under 3$\mu\textrm{m}$. The cooled metal from CGL zinc bath during operation of the galvannealed steel strip was remelted in graphite crucible at the lab and agitated after increasing Al content from 0.14% to 0.16% with decreasing the molten metal temperature from $470^{\circ}C$to $445^{\circ}C$. The agitating was done by agitator and nitrogen. The molten was analyed by SEM and EDS. It was considered that the Fe and the bottom dross($FeZN_7$) could react with aluminium to from the float dress($Fe_2Al_5$) according to the molten metal temperature down and the float dress rise to the surface of the zine bath. So the Fe and dross in the bath could be romoved out of the bath. It was confirmed that the proper purication conditions of GA zine bath is 0.02% of Al increasing, bath temperature down from $460^{\circ}C$ to $450^{\circ}C$and agitator and nitrogen.

  • PDF

Effect of Changes in Metal Characteristics of Hot-Forged Alloy Steel on Mechanical Properties of an Automotive Automatic Transmission Gear (자동차 자동변속기 기어용 합금강의 열간 단조 성형에 따른 기계적 특성 변화에 관한 연구)

  • Kim, Hwa-Jeong;Kim, Yohng-Jo;Kim, Hyun-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.135-146
    • /
    • 2016
  • This study investigated the effect of the changes in metal characteristics due to the hot forging on SCR420HB applied to ensure the optimal production of the hot-forging ratio on the mechanical properties of an automotive automatic transmission gear. The microstructural changes in the forging ratio were investigated by adjusting the forging range into multiple ranges from alloy steel. This was done in order to set the optimum forging range given the manufacturing process conditions during the hot forging of alloy steel parts with a carbon content of more than 0.8% wt. The effects of the content change in the microstructure on the mechanical properties due to the use of the part were examined.

Preparation of NiO/YSZ Ultra-Fine Powder Composites Using Self-Sustaining Combustion Process (Self-Sustaining Combustion Process를 이용한 NiO/YSZ 초미세 복합분말 제조)

  • 김선재;정충환;김경호;김영석;국일현
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.411-417
    • /
    • 1996
  • Ultrafine NiO/YSZ (Yttria Stabilized Zirconia) powders were made by using a glycine nitrate process which is used as anode material for solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal nitrates occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized powders were examined with X-ray diffraction(XRD) Brunauer Emmett Teller with N2 absorption. scanning electron microscopy (SEM). and transmission electron microscopy (TEM). Ultrafine NiO/YSZ powders of 15-18 m2/g were obtained through GNP when the content of glycine was controlled to 1 or 2 times the stoichiometric ratio in the precursor solutions. Strongly acid precursor solution increased the specific surface area of the synthesized powders. This is suggested to be the increased binding of metal nitrates and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of {{{{ { NH}`_{3 } ^{+ } }}. After sintering and reducing treatment of NiO/YSZ powders synthesized by GNP the Ni/YSZ pellet showed ideal microstructure where very fine Ni particles of 3-5 ${\mu}{\textrm}{m}$ were distributed uniformly and fine pore around Ni metal particles was formed. leading to anincrease of the triple phase boundary among gas Ni and YSZ.

  • PDF

Regulation of heavy metal and Growth Adaptation of Meliotus suaveolens Seedlings Treated with Pb (Pb처리에 따른 전동싸리 유식물의 생장적응과 증금속의 조절)

  • 박태규;송승달
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.179-186
    • /
    • 1998
  • Effects of lead(Pb) and calcium(Ca) on growth responses, accumulation of heavy metals and nitrogen fixation activities of Melilotus suaveolens seedlings were quantitatively analyzed during growing period. Pb contents of the root treated with 30, 100 ppm Pb and 100 ppm Pb added 100 ppm Ca were 54.1, 90.9 and 26.1 folds higher than that of the control, respectively, at pH 4.2 in 28th days, and heavy metal content of plant increased with increasing of pH and Pb concentration. The melilot plant was classified as a Pb accumulator by higher accumulation of Pb in shoot than that of root. Pb treatments resulted in inhibiton of height and chlorophyll contet, and Ca treatment increased height and chlorophyll content insignificantly at pH 4.2 in 28 days. The plant biomass reduced 49, 60 and 54% at pH 4.2 and 47,53 and 50% at pH 6.5, respectively, by 30, 100 ppm Pb and 100 ppm Pb added 100 ppm Ca treatment. Specific nitrogen fixation of nodules reduced 68.4% and 46.6% by 100 ppm Pb treatment and 3.7% and 24.9% by 100 ppm Pb added 100 ppm Ca at pH 4.2 and pH 6.5, respectively, so Ca inhibited significantly Pb activity and toxicity in acdic pH. Nodule formation were reduced to 33, 33 and 50% at pH 4.2 and 50, 33 and 38% at pH 6.5 by 30, 100 ppm Pb and 100 ppm Pb added 100 ppm Ca, respectively.

  • PDF

A Study on the Heavy Metal Contents of Common Salts in Korea (우리나라 일부 소금의 중금속 함량에 대한 조사연구)

  • Hwang, Seong-Hi
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.73-86
    • /
    • 1988
  • In order to determine the content levels of trace metals in common salts, 64 bay salt samples were collected from three producing districts and 33 bay salt samples, 32 remade salt samples and 5 fine salt samples were collected from 7 major cities in Korea, from August to September 1987. These were analysed for content levels of Pb, Cd, Cu, Zn and Mn using Atomic Absorption Spectrophotometer. The results were as follows: 1. Lead contents in three type salts were N.D. - 1081.9 $\mu$g/kg and fourteen percent of the 114 samples exceeded the World Health Organization(WHO) criteria of 100$\mu$g/kg. Cadmium contents of samples were N.D.- 382C.5 $\mu$g/kg and five percent of the 114 samples were over the Spanish criteria of 500 $\mu$g/kg. Copper contents of samples were 8,9-214.9 $\mu$g/kg and there was not a sample over the World Health Organization(WHO) criteria of 500 $\mu$g/kg. Zinc contents ranged N.D. - 342.9 $\mu$g/kg and Manganese contents ranged N.D.- 8.31 mg/kg. 2. The comparison of heavy metal contents among the bay salts from three producing districts was significantly different in Pb, Cd and Cu contents. 3. The comparison of heavy metal contents between the bay salts and remade salts was not significantly different in Pb, Cd and Cu contents. 4. The contents of Pb, Cd, Zn and Mn in fine salts were much lower than those of bay salts and remade salts.

  • PDF

$NH_3$ oxidation using Ag-Cu/$Al_2O_3$ composite catalyst at low temperature (Ag-Cu/$Al_2O_3$ 복합촉매를 이용한 저온에서의 $NH_3$ 산화)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.313-319
    • /
    • 2014
  • This study was performed to obtain high conversion efficiency of $NH_3$ and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag-xCu ($0{\leq}x{\leq}6$)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type II adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of $Ag_2O$, CuO and $CuAl_2O$ was observed by XRD analysis. In the low temperature($150{\sim}200^{\circ}C$), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, $NO_2$) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.

Effects of Heavy Metals on Plant Growths and Pigment Contents in Arabidopsis thaliana

  • Baek, Seung-A;Han, Taejun;Ahn, Soon-Kil;Kang, Hara;Cho, Myung Rae;Lee, Suk-Chan;Im, Kyung-Hoan
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.446-452
    • /
    • 2012
  • The effect of heavy metals on seedling growth and pigment levels was studied in Arabidopsis using essential (Cu, Mn, and Zn) and non-essential metals (Pb and Hg). Generally increasing the concentrations of the metals resulted in a gradual decrease in root and shoot lengths, a decrease in chlorophylls, an increase in anthocyanins and a fluctuation in carotenoid content depending on the metal types. The toxicity of the metals decreased in the following order: Cu > Hg > Pb > Zn > Mn. Among the five metals, Cu was exceptionally toxic and the most potent inducer of anthocyanins. Pb induced the smallest quantity of anthocyanins but it was the strongest inducer of carotenoids. It suggests that the Cu-stressed Arabidopsis may use anthocyanins as its main antioxidants while the Pb-stressed Arabidopsis use carotenoids as its main protectants. All of the five metals induced an accumulation of anthocyanins. The consistent increase in anthocyanin content in the metal-stressed Arabidpsis indicates that anthocyanins play a major role in the protection against metal stresses.