Browse > Article
http://dx.doi.org/10.4014/jmb.1009.09046

Metal Biosorption by Surface-Layer Proteins from Bacillus Species  

Allievi, Mariana Claudia (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica)
Florencia, Sabbione (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica)
Mariano, Prado-Acosta (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica)
Mercedes, Palomino Maria (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica)
Ruzal, Sandra M. (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica)
Carmen, Sanchez-Rivas (Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento de Quimica Biologica)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.2, 2011 , pp. 147-153 More about this Journal
Abstract
Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified S-layers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of $Ca^{2+}$ and $Zn^{2+}$, but not of $Cd^{2+}$, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of S-layer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.
Keywords
Metal biosorption; S-layer; Bacillus; spores;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Andreazza, R., S. Pieniz, L. Wolf, M. K. Lee, F. A. Camargo, and B. C. Okeke. 2010. Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Sci. Total Environ. 408: 1501-1507.   DOI   ScienceOn
2 Merroun, M. L., J. Raff, A. Rossberg, C. Hennig, T. Reich, and S. Selenska-Pobell. 2005. Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl. Environ. Microbiol. 71: 5532-5543.   DOI   ScienceOn
3 Mignot, T., S. Mesnage, E. Couture-Tosi, M. Mock, and A. Fouet. 2002. Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol. Microbiol. 43: 1615-1627.   DOI   ScienceOn
4 Pollmann, K. and S. Matys. 2007. Construction of an S-layer protein exhibiting modified self-assembling properties and enhanced metal binding capacities. Appl. Microbiol. Biotechnol. 75: 1079-1085.   DOI   ScienceOn
5 Pollmann, K., J. Raff, M. Merroun, K. Fahmy, and S. Selenska-Pobell. 2006. Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv. 24: 58-68.   DOI   ScienceOn
6 Prado Acosta, M., E. Valdman, F. Battaglini, S. Leite, and S. M. Ruzal. 2005. Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. World J. Microbiol. Biotechnol. 21: 1157-1163.   DOI   ScienceOn
7 Prado Acosta, M., S. M. Ruzal, M. C. Allievi, M. M. Palomino, and C. Sanchez Rivas. 2010. Synergistic effects of the Lactobacillus acidophilus surface layer and nisin on bacterial growth. Appl. Environ. Microbiol. 76: 974-977.   DOI
8 Brenner, A. J. and E. D. Harris. 1995. A quantitative test for copper using bicinchoninic acid. Anal. Biochem. 226: 80-84.   DOI   ScienceOn
9 Cucchi, A. and C. Sanchez Rivas. 1994. Sensitivity of growing cells and spores of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to osmotic variations. Curr. Microbiol. 28: 123-127.   DOI   ScienceOn
10 Chung, L., K. S. Rajan, E. Merdinger, and N. Grecz. 1971. Coordinative binding of divalent cations with ligands related to bacterial spores. Equilibrium studies. Biophys. J. 11: 469-482.   DOI   ScienceOn
11 Lewis, L. O., A. A. Yousten, and R. G. Murray. 1987. Characterization of the surface protein layers of the mosquitopathogenic strains of Bacillus sphaericus. J. Bacteriol. 169: 72-79.   DOI   ScienceOn
12 Smit, E., F. Oling, R. Demel, B. Martinez, and P. H. Pouwels. 2001. The S-layer protein of Lactobacillus acidophilus ATCC 4356: Identification and characterisation of domains responsible for S-protein assembly and cell wall binding. J. Mol. Biol. 305: 245-257.   DOI   ScienceOn
13 Tsekova, K., D. Todorova, V. Dencheva, and S. Ganeva. 2010. Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger. Bioresour. Technol. 101: 1727-1731.   DOI
14 Velasquez, L. and J. Dussan. 2009. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167: 713-716.   DOI   ScienceOn
15 Williams, D. D. and C. L. Turnbough. 2004. Surface layer protein EA1 is not a component of Bacillus anthracis spores but is a persistent contaminant in spore preparations. J. Bacteriol. 186: 566-569.   DOI
16 Guo, G., L. Zhang, Z. Zhou, Q. Ma, J. Liu, C. Zhu, L. Zhu, Z. Yu, and M. Sun. 2008. A new group of parasporal inclusions encoded by the S-layer gene of Bacillus thuringiensis. FEMS Microbiol. Lett. 282: 1-7.   DOI
17 He, L. M. and B. M. Tebo. 1998. Surface charge properties of and Cu(II) adsorption by spores of the marine Bacillus sp. strain SG-1. Appl. Environ. Microbiol. 64: 1123-1129.   ScienceOn
18 Hullo, M. F., I. Moszer, A. Danchin, and I. Martin-Verstraete. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183: 5426-5430.   DOI   ScienceOn
19 Jakava-Viljanen, M., S. Avall-Jaaskelainen, P. Messner, U. B. Sleytr, and A. Palva. 2002. Isolation of three new surface layer protein genes (slp) from Lactobacillus brevis ATCC 14869 and characterization of the change in their expression under aerated and anaerobic conditions. J. Bacteriol. 184: 6786-6795.   DOI   ScienceOn
20 Kern, J. W. and O. Schneewind. 2008. BslA, a pXO1-encoded adhesin of Bacillus anthracis. Mol. Microbiol. 68: 504-515.   DOI
21 Liu, M., S. Li, S. Hu, C. Zhao, D. Bi, and M. Sun. 2008. Display of avian influenza virus nucleoprotein on Bacillus thuringiensis cell surface using CTC as a fusion partner. Appl. Microbiol. Biotechnol. 78: 669-676.   DOI
22 Lo, W., L. M. Ng, H. Chua, P. H. Yu, S. N. Sin, and P. K. Wong. 2003. Biosorption and desorption of copper(II) ions by Bacillus sp. Appl. Biochem. Biotechnol. 105-108: 581-591.   ScienceOn
23 Garavaglia, L., S. B. Cerdeira, and D. L. Vullo. 2010. Chromium (VI) biotransformation by beta- and gamma-Proteobacteria from natural polluted environments: A combined biological and chemical treatment for industrial wastes. J. Hazard Mater. 175: 104-110.   DOI   ScienceOn
24 Sandman, K., R. Losick, and P. Youngman. 1987. Genetic analysis of Bacillus subtilis spo mutations generated by Tn917-mediated insertional mutagenesis. Genetics 117: 603-617.   ScienceOn
25 Sara, M. and U. B. Sleytr. 2000. S-Layer proteins. J. Bacteriol. 182: 859-868.   DOI   ScienceOn
26 Selenska-Pobell, S., P. Panak, V. Miteva, I. Boudakov, G. Bernhard, and H. Nitsche. 1999. Selective accumulation of heavy metals by three indigenous Bacillus strains. B cereus, B megaterium from drain waters of a uranium waste pile. FEMS Microbiol. Ecol. 29: 59-67.   DOI   ScienceOn
27 Dick, G. J., J. W. Torpey, T. J. Beveridge, and B. M. Tebo. 2008. Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl. Environ. Microbiol. 74: 1527-1534.   DOI
28 Driks, A. 1999. Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63: 1-20.   ScienceOn
29 Engelhardt, H. 2007. Are S-layers exoskeletons? The basic function of protein surface layers revisited. J. Struct. Biol. 160: 115-124.   DOI   ScienceOn
30 Francis, C. A., K. L. Casciotti, and B. M. Tebo. 2002. Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Arch. Microbiol. 178: 450-456.   DOI   ScienceOn