• Title/Summary/Keyword: metal contamination

Search Result 690, Processing Time 0.029 seconds

Bioremediation of metal contamination groundwater by engineered yeasts expressing phytochelatin synthase (Phytochelatin synthase 발현을 통한 효모의 중금속 처리에 관한 연구)

  • ;;;Wilfred Chen
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.290-292
    • /
    • 2004
  • Heavy metal contamination has been increased in aqueous environments near many industrial facilities, such as metal plating facilities, mining operations, and tanneries. The soils in the vicinity of many military bases are also reported to be contaminated and pose a risk of groundwater and surface water contamination with heavy metals. The biological removal of metals through bioaccumulation has distinct advantages over conventional methods; the process rarely produces undesirable or deleterious chemical byproducts, it is highly efficient, easy to operate and cost-effective in the treatment of large volumes of wastewater containing toxic heavy metals. In addition, a recent development of molecular biology shed light on the enhancing the microorganism's natural remediation capability as well as improving the current biological treatment. In this study, characteristics of the cell growth and heavy metal accumulation by Saccharomyces cerevisiae strains expressing phytochelatin syntahse (PCS) gene were studied in batch cultures. The AtCRFI gene was demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells tolerated more Cd$^{2+}$ than controls.

  • PDF

Heavy Metal Contamination and Process for Its Removal in the Vicinity of the Dalsung Cu-W Mine (달성광산(達成鑛山) 주변지역(周邊地域)에서의 중금속오염(重金屬汚染)과 이의 제거방안(除去方案))

  • Kim, Kyoung-Woong;Hong, Young-Kook;Kim, Taik-Nam
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 1996
  • The Dalsung copper-tungsten mine in the Taegu area, Korea was closed in 1975 and may be the sources of the heavy metal contamination in the tributary system and soil-plant system due to the mine drainage derived from the mine wastes and tailings. To examine the degree and extent of heavy metal contamination in the vicinity of Dalsung mine area, stream water and soil samples were taken and analyzed for heavy metals by ICP-AES and AAS. Highly contaminated soils are found near the Lower Tunnel No.0 ranging up to $1760{\mu}g/g$ As, $2060{\mu}g/g$ Cu, $1120{\mu}g/g$ Pb and 346 ${\mu}g/g$ Zn. From the results of the sequential extraction methods for the metal speciation, the heavy metals in soils may be derived from soil parent materials and acid mine drainage. With the processes for the heavy metal removal, most of the heavy metal ions in the acid mine drainage are removed by being exchanged with Ca ions held by the bentonite, hydroxyapatite and calcium hydoxide.

  • PDF

Health Risk Assessment through Residents Exposure to Toxic Metals in Soil and Groundwater in the Vicinity of Sanyang Metal Mine

  • Park, Jeong-Hun;Choi, Kyoung-Kyoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.97-103
    • /
    • 2012
  • BACKGROUND: Metal mines were actively developed in the early twentieth century in Korea; however, most of these mines were closed and abandoned without proper management. Therefore, toxic metal contamination in the vicinity of Korean abandoned metal mines has been reported. A risk assessment for these metals was performed for residents near by abandoned Sanyang metal mine. METHODS AND RESULTS: Soil and groundwater samples were collected from May to October 2007 around the mine. After pretreatment of these samples, metal concentrations were measured and then a risk assessment was performed using the Korean soil-contamination risk assessment guidelines. Cancer risk was the highest from inhalation of Pb-contaminated soil, followed in descending order by As-contaminated soil inhalation and water ingestion. The sum of carcinogenic risks was $3.35{\times}10^{-3}$. The noncarcinogenic risk was observed for inhalation of Hg-contaminated soil (5.71). CONCLUSION: Inhalation of soil in dust was the principal pathway to cause the health risk and most of the risk was attributed to As, Pb,Cd, and Hg contamination.

Applicability of Resistivity/Capacitance Measurement on CPT Module for Investigation of Subsurface Contamination (오염지반 조사를 위한 전기비저항/정전용량 측정콘의 적용성 평가)

  • Oh, Myoung-Hak;Kim, Yong-Sung;Yoo, Dong-Ju;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.330-337
    • /
    • 2006
  • Resistivity cone penetrometer test (RCPT) can be employed at a relatively low cost for delineation of subsurface contamination in situ, and then be supplemented with a minimum confirmatory sampling and laboratory testing program. While the resistivity measurement have potential to investigate the subsurface contamination, resistivity measurements alone will lead to some degree of ambiguity in the results. In this study, capacitance measurement was incorporated into the RCPT to overcome the ambiguity inherent in electrical resistivity measurements for delineating the subsurface contamination. This study is focused on verifying the applicability of resistivity and capacitance measurements on CPT module to provide information on contaminated subsurface by heavy metal and petroleum hydrocarbon. Laboratory model tests were performed to evaluate the sensitivity of the measured resistivity and relative capacitance on the water content and different types of contaminants. Test results show that simultaneous measurement of electrical resistivity and capacitance can give more reliable information on subsurface contamination.

  • PDF

The Recognition Level of Food Contamination with Residual Pesticides and Hazardous Heavy Metals in Taejon Area (식품의 잔류농약 및 유해중금속의 오염인식도 -대전지역을 중심으로-)

  • 한장일;김성애
    • Korean Journal of Community Nutrition
    • /
    • v.3 no.3
    • /
    • pp.454-465
    • /
    • 1998
  • This study was to investigate the recognition level of food contamination with residual pesticides and hazardous heavy metals from 365 male and female adults in Taejon area using questionnaires. Among the recognizing level of residual pesticides in overall foods, 69.1% were 'serious', 25.6% were 'average' and 5.3% were 'not serious'. Over 94.7% of the subjects recognized residual pesticides pollution infoods. for hazardous heavy metals in food, 47.8% responsed as 'serious', 40.5% as 'average' and 11.8 as ' not serious' . Over 88.3% of the subjects recognized contaminated pesticides seriously in fruits, 72.1% in vegetables and 51.7% in cereals, whereas 55.7% of the subjects recognized hazardous heavy metal contamination seriously in fruits, 53.4% in vegetables, 40.8% in fishes and shellfishes and 35.0% in seaweeds. The subjects recognized residual pesticides contamination more seriously in overall foods, cereal, potatoes and starches, bean, vegetables and fruits, whereas hazardous heavy metal contamination was recognized more seriously in fishes and shellfishes, and seaweeds food groups. Comparisons were shown based on individuial's occupation. Farmer, forester, iner and fisher showed the lowest recognizing level of food contamination in most food groups. The mean score of the dietary effect by mass media's information on food contamination from residual pesticides and hazardous heavy metals were 3.51±0.96 out of 5 points. By Duncan's multiple range test, sex, age, marriage, food cost per month, concerns about health and nutrition knowledge showed significant differences in the mean effect score at p<0.05. According to a pesticides contamination in several food groups were affected by food cost per month, mass media's information on food contamination, health status, and concerns about health, But a recognition level of hazardous heavy metals in food were affected by income and, food cost per month mass media's information on food contamination, health status, concern about health and nutrition knowledge. People who need to take extreme precautions of food contamination were in order of producers, government officials, homemakers, the consumer's association and consumers.

  • PDF

Investigation of Pollution of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Soil near Railway Rails (철도레일 부근 토양의 다환방향족 탄화수소 및 중금속 오염도 조사)

  • Choi, Hyun-Kyung;Yoon, In-Ju;Shin, Tae-Cheon;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.947-956
    • /
    • 2018
  • Trains have been a major means of transport in Korea during these past decades. However, train facilities such as stations and repair shops are contaminated with organic and inorganic substances. There is a high probability of train facility contamination with polyaromatic hydrocarbons (PAHs). This study evaluated the PAH and heavy metal contamination of soil near railroads in the Kyungpook area. A total of 18 soil samples were collected from the railroads and analyzed for 16 PAHs and 6 heavy metal species. The contamination level of the top soil was found to be slightly higher than that of the subsoil for contamination with PAHs. The ratio of carcinogenic PAH concentration to the total PAH concentration was relatively high, with a maximum of 0.9. The toxicity equivalent (TEQ) of the PAHs were 500.6 ng/kg in the topsoil and 355.5 ng/kg in the subsoil. The ratio of low molecular PAHs (LPAHs) to high molecular PAHs (LPAHs) ranged from 6.7 to 29.5; this shows that contamination is primarily due to combustion of fuel rather than due to petroleum. The ratio of phenanthrene to anthracene and the ratio of fluoranthene to pyrene also show that contamination occurred due to combustion for transportation. The heavy metal contamination level was lower than the Korean standard, but higher than the background concentration; this indicates that the soil was affected by the operation of the railways.

Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area (삼산제일.삼봉 동광산 주변 수계의 중금속 오염도 평가)

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.171-187
    • /
    • 2006
  • The status of heavy metal contamination was investigated using chemical analyses of stream waters and sediments obtained from Samsanjeil and Sambong Cu mining area in Goseong-gun, Gyeongsangnam-do. In addition, the degree and the environmental risk of heavy metal contamination in stream sediments was assessed through pollution index (Pl) and danger index (DI) based on total digestion by aqua regia and fractionation of heavy metal contaminants by sequential extraction, respectively. Not only the degree of heavy metal contamination was significantly higher in Samsanjeil area than in Sambong area, but its environmental risk was also revealed much more serious in Samsanjeil area than in Sambong area. The differences in status and level of contamination and environmental risk between both two mining areas may be attributed to existence of contamination source and geology. Acid mine drainage is continuously discharged and flows into the stream in Samsanjeil mining area, and it makes the heavy metal contamination in the stream more deteriorated than in Sambong mining area in which acid mine drainage is not produced. In addition, the geology of Samsanjeil mining area is mainly comprised of andesitic rocks including a small amount of calcite and having lower pH buffering capacity fer acid mine drainage, and it is likely that the heavy metal contamination cannot be naturally attenuated in streams. On the contrary, the main geology of Sambong mining area consists of pyroclastic sedimentary Goseong formation containing a high content of carbonates, particularly calcite, and it seems that these carbonates of high pH buffering capacity prevent the heavy metal contamination from proceeding downstream in stream within that area.

Determination of Bioconcentration Factor of Heavy Metal (loid)s in Rice Grown on Soils Vulnerable to Heavy Metal (loid)s Contamination

  • Lee, Seul;Kang, Dae-Won;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Lee, Jin-Ho;Cho, Il Kyu;Moon, Byeong-Churl;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.106-114
    • /
    • 2017
  • There is an increasing concern over heavy metal(loid) contamination of soil in agricultural areas including paddy soils. This study was conducted to determine the bioconcentration factor (BCF) for heavy metal(loid)s to brown rice grown in paddy soils vulnerable to heavy metal(loid)s contamination, for the quantitative health risk assessment to the residents living nearby the metal contaminated regions. The samples were collected from 98 sites nationwide in the year 2015. The mean and range BCF values of As, Cd, Cu, Ni, Pb, and Zn in brown rice were 0.027 (0.001 ~ 0.224), 0.143 (0.001 ~ 2.434), 0.165 (0.039 ~ 0.819), 0.028 (0.005 ~ 0.187), 0.006 (0.001 ~ 0.048), and 0.355 (0.113 ~ 1.263), respectively, with Zn showing the highest. Even though the relationship between heavy metal(loid) contents in the vulnerable soils and metal contents in brown rice collected at the same fields was not significantly correlated, the relationship between log contents of heavy metal(loid)s in the vulnerable soils and BCF of brown rice wes significantly correlated with As, Cd, Cu, and Zn in rice. In conclusion, soil environmental risk assessment for crop uptake should consider the bioconcentration factor calculated using both the initial and vulnerable heavy metal(loid) contents in the required soil and the crop cultivated in the same fields.

Long-term Characteristics of Heavy Metal Contamination in Highway Roadside Soil and Sediment (고속도로변 토양과 퇴적물의 중금속 장기 오염 특성)

  • Lee, Eui-Sang;Lee, Ju-Goang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.385-394
    • /
    • 2007
  • To study long-term characteristics of the heavy metal contamination, soil and sediment samples were collected at 14 sites in highway roadside during 6 years. The total concentrations of metals including Zn, Ni, Cu. Pb, Cr, Cd, and As in those samples were investigated. The results indicate that concentrations of Zn, Ni, and Cu in highway roadside soils are much higher than the metal concentrations in background soils and appear to be increased gradually. Strong linear relationships between the cumulative traffic and the contents of the metals in highway roadside soils were obtained. Therefore, they might be used to predict the heavy metal concentrations in the future highway roadside soils for establishing the countermeasure of soil and sediment contamination.

  • PDF

A Study on Effects of Rainfall on Contamination at Stream Around the Developed Quarry (강우가 석산개발 지역 주변 하천의 오염에 미치는 영향에 관한 연구)

  • Lee, Yang-Kyu;Han, Jung-Geun;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • This paper describes the influence of rainfall on contamination at stream around the developed quarry. The investigation results are analyzed to evaluate the relationship rainfall and heavy metals (or water pollution). In the relationship rainfall and heavy metals, the result showed that the heavy metal contaminations are caused by boulder stone, waste residue and stone sludge, which is reacted with the direct contamination source, in the burried layer. It also found that the water flow change of stream according to the rainfall increase affected the large effect to a contamination level of heavy metal. the water pollution was increased by time changed from the rainy season to the dry season. That is, a lot of suspended solids had been discharge from the developed quarry due to rainfall increase, and then pollution level of water increases as the undercurrent of suspended solids is generated in stream due to rainfall decrease. Therefore, it analyzed that continuous causes of heavy metal contamination and water pollution in stream are materials in the burried layer and a discharge of pollution source from the developed quarry due to rainfall.