Subcellular Distribution of Heavy Metals in Organs of Bivalve Modiolus Modiolus Living Along a Metal Contamination Gradient

  • Podgurskaya, Olga V. (Institute of Marine Biology, Far East Branch, Russian Academy of Sciences) ;
  • Kavun, Victor Ya. (Institute of Marine Biology, Far East Branch, Russian Academy of Sciences)
  • Published : 2006.03.30

Abstract

Concentration and distribution of Fe, Zn, Cu, Cd, Mn, Pb, Ni among subcellular fractions (cellular membrane structures and cytosol) and Zn, Cu, Cd among cytoplasmic proteins in the kidney and digestive gland of mussel Modiolus modiolus living along a polymetallic concentration gradient were studied. It was found in the kidney of M. modiolus from contaminated sites that the Fe percent increased in the "membrane" fraction, whereas Zn, Pb, Ni and Mn percent increased in the cytosol compared to the kidney of the control mussel. Note kidney cytosol of M. modiolus from clean and contaminated sites sequestered major parts of Cu and Cd. In the digestive gland of M. modiolus from contaminated sites Fe, Zn, Cd, Mn, Ni percent increased in the "membrane" fraction, whereas Cu, Pb percent increased in the cytosol compared to digestive gland of control mussel. Gel-filtration chromatography shows kidney of M. modiolus contains increased metallothionein-like protein levels irrespective of ambient dissolved metal concentrations. It was shown that the metal detoxification system in the kidney and digestive gland of M. modiolus was efficient under extremely high ambient metal levels. However, under complex environmental contamination in the kidney of M. modiolus, the metal detoxification capacity of metallothionein-like proteins was damaged.

Keywords

References

  1. Bebianno, M.J. and M.A. Serafim. 2003. Variation of metal and metallothionein concentration in natural population of Ruditapes decussates. Arch. Environ. Contam. Toxicol., 44, 53-66 https://doi.org/10.1007/s00244-002-2004-7
  2. Bonneris, E., A. Giguere, O. Perceval, T. Buronfosse, S. Masson, L. Hare, and P.G.C. Campbell. 2005. Sub-cellular partitioning of metals (Cd, Cu, Zn) in the gills of a freshwater bivalve, Pyganodon grandis: Role of calcium concretions in metal sequestration. Aquat. Toxicol., 71, 319-334 https://doi.org/10.1016/j.aquatox.2004.11.025
  3. Campbell, P.G.C., A. Giguere, E. Bonneris, and L. Hare. 2005. Cadmium-handling strategies in two chronically exposed indigenous freshwater organisms – the yellow perch (Perca flavescens) and floater mollusc (Pyganodon grandis). Aquat. Toxicol., 72, 83-97 https://doi.org/10.1016/j.aquatox.2004.11.023
  4. Carpene, E. and S.Y. George. 1981. Absorbtion of cadmium by gills of Mytilus edulus (L.). Mar. Physiol., 1, 23–34
  5. Chelomin, V.P., N.N. Belcheva, and M.V. Zahartsev. 1998. Biochemical mechanisms of adaptation of Mytilus trossulus to cadmium and copper ions. Russ. J. Mar. Biol., 24(5), 319-325. (In Russian)
  6. Choi, H.J., I.-Y. Ahn, S.-K. Ryu, I.-S. Lee, and K.-H. Jeong. 2001. Preliminary evidence for metallothionein-like Cd-binding protein in the kidney of the Antarctic clam Laternula elliptica. Ocean and Polar Res., 23(4), 337-345 https://doi.org/10.1016/S0141-1187(02)00002-0
  7. Choi, H.J., I.-Y. Ahn, K.-W. Kim, H.-A. Kim, and I.-S. Lee. 2003. Subcellular distribution of naturally elevated cadmium in the Antarctic clam Laternula elliptica. Bull. Environ. Contam. Toxicol., 71, 83-89 https://doi.org/10.1007/s00128-003-0134-x
  8. Conner, E.A. and B.A. Fowler. 1994. Preliminary purification and partial characterization studies of a low-molecular weight cytosolic lead-binding protein in liver of the channel catfish (Ictalurus punctatus). Aquat. Toxicol., 28, 29-36 https://doi.org/10.1016/0166-445X(94)90018-3
  9. Dovzhenko, N.V., A.V. Kurilenko, N.N. Belcheva, and V.P. Chelomin. 2005. Cadmium-induced oxidative stress in the bivalve Modiolus modiolus. Russ. J. Mar. Biol., 31(5), 358-362. (In Russian)
  10. Fowler, B.A. 1998. Roles of lead-binding proteins in mediating lead bioavailability. Environ. Health Perspect. Suppl., 106(6), 1585-1587 https://doi.org/10.1289/ehp.98106s61585
  11. Fowler, B.A. and G.E. DuVal 1991. Effects of lead on the kidney: Roles of high affinity lead-binding proteins. Environ. Health Perspect. Suppl., 91, 77-80 https://doi.org/10.2307/3430986
  12. Frazier, J.M., S.S. George, J. Overnell, T.L. Coombs, and J. Kaji. 1985. Characterization of two molecular weight classes of cadmium binding proteins from the mussel Mytilus edulis (L.). Comp. Biochem. Physiol., 80C, 257-262
  13. Giguere, A., Y. Couillard, P.G.C. Campbeel, O. Perceval, L. Hare, B. Pinel-Alloul, and J. Pellerin. 2003. Steady-state distribution of metals among metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetallic gradient. Aquat. Toxicol., 64, 185-200 https://doi.org/10.1016/S0166-445X(03)00052-3
  14. George, S.G., B.J.S. Pirie, and T.L. Coombs. 1976. The kinetics of accumulation and excretion of ferric hydroxide in Mytilus edulis (L.) and its distribution in tissues. J. Exp. Mar. Biol. 45, 78-84
  15. Isani, G., G. Andreani, M. Kindt, and E. Carpene. 2000. Metallothionein in marine mollusks. Cell. Mol. Biol., 46(2), 311-330
  16. Kaland, T., T. Andersen, and K. Hylland. 1993. Accumulation and subcellular distribution of metals in the marine gastropod Nassarius reticulates. p. 37-55. In: Ecotoxicology of metals in invertebrates, ed. by R. Dallinger and P.S. Rainbow. CRC Press, Boca Raton
  17. Kavun, V.Ya. and V.M. Shulkin. 2005. Trace metals variation of the bivalve Crenomytilus grayanus during a field transplant experiment. Russ. J. Mar. Biol., 31(2), 123-128. (In Russian)
  18. Klein, D., S. Sato, and K.H. Summer. 1994. Quantification of oxidized metallothionein in biological material by a Cd saturation method. Anal. Biochem., 221, 405-409 https://doi.org/10.1006/abio.1994.1434
  19. Mouneyrac, C., B. Bertnet, and J.-C. Amiard. 1999. Cd distribution in the tissues of oysters (Crassostrea gigas) exposed chronically in situ. Water Air Soil Pollut., 112, 187-196 https://doi.org/10.1023/A:1005058915408
  20. Nieboer, E. and D.N.S. Richardson. 1980. The replacement of the nondescript term “heavy metal” by a biologically and chemically significant classification of metal ions. Environ. Poll., 1, 3-26 https://doi.org/10.1016/0143-148X(80)90017-8
  21. Podgurskaya, O.V., V.Ya. Kavun, and O.N. Lukyanova. 2004. Heavy metal accumulation and distribution in organs of the mussel Crenomytilus grayanus from upwelling areas of the Okhotsk Sea and Sea of Japan. Russ. J. Mar. Biol., 30(3), 219-226. (In Russian)
  22. Podgurskaya, O.V. and V.Ya. Kavun. 2005. Comparison of the subcellular distribution of heavy metals in organs of the bivalve Crenomytilus grayanus and Modiolus modiolus from a chronically polluted area. Russ. J. Mar. Biol., 31(6), 435-442. (In Russian)
  23. Ponzano, E., F. Dondero, J.-M. Bouquegneau, R. Sack, P. Hunziker, and A. Viarengo 2001. Purification and biochemical characterization of cadmium metallothionein from the digestive gland of the Antarctic scallop Adamussium colbecki. Polar. Biol., 24, 147-153 https://doi.org/10.1007/s003000000186
  24. Pullen, J.S.H. and P.S. Rainbow. 1991. The composition of pyrophosphate heavy metal detoxification granules in barnacles. J. Exp. Mar. Biol. Ecol., 150, 249-266 https://doi.org/10.1016/0022-0981(91)90070-D
  25. Regoli, F. and E. Orlando. 1994. Accumulation and subcellular distribution of metals (Cu, Fe, Mn, Pb and Zn) in the Mediterranean mussel Mytilus galloprovincialis during a field transplant experiment. Mar. Poll. Bul., 28, 592-600 https://doi.org/10.1016/0025-326X(94)90360-3
  26. Riveros, A., M. Zuniga, and A. Larrain. 2003. Copper metallothionein-like proteins as exposure biomarker in native and transplanted intertidal populations of the mussel Perumytilus purpuratus from San Jorge Bay, Antofagasta, Chile. Bull. Environ. Contam. Toxicol., 70, 233-241 https://doi.org/10.1007/s00128-002-0182-7
  27. Roesijadi, G. 1992. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol., 22(2), 81-114 https://doi.org/10.1016/0166-445X(92)90026-J
  28. Roesijadi, G. 1997. Metallothionein mRNA induction and generation of reactive oxygen species in molluscan hemocytes exposed to cadmium in vitro. Comp. Biochem. Physiol., 118C(2), 171-176
  29. Sallivan, P.A., W.E. Robinson, and M.P. Morse. 1988. Subcellular distribution of metals within the kidney of the bivalve Mercenaria mercenaria (L.). Comp. Biochem. Physiol., 91C(2), 589-595
  30. Salvini-Plawen, L.V. 1988. The structure and function of molluscan digestive systems. p. 301-379. In: The Mollusca 11, ed. by E.R. Trueman and M.R. Clarke. Academic Press, Orlando, Florida
  31. Scarlato, O.A. 1981. Bivalves of temperate zones of western part of Pacific Ocean. Nauka, Leningrad. 480 p. (In Russian)
  32. Shulkin, V.M. 2004. Metals in the ecosystems of coastal sea shallow waters. Dalnauka, Vladivostok. 279 p. (In Russian)
  33. Shulkin, V.M., V.Ya. Kavun, and B.J. Presley. 2003. Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environ. Inter., 29, 493-502 https://doi.org/10.1016/S0160-4120(03)00004-7
  34. Stohs, S.J. and D. Bagchi. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 18, 321-336 https://doi.org/10.1016/0891-5849(94)00159-H
  35. Sunda, W.G. and S.A. Huntsman. 1983. Effect of competitive interaction between manganese and copper on cellular manganese and growth in estuarine and oceanic species of the diatome Thalassiosira. Limnol. Oceanogr., 28(5), 924-934 https://doi.org/10.4319/lo.1983.28.5.0924
  36. Viarengo, A., B. Burlando, N. Ceratto, and I. Panfoli. 2000. Antioxidant role of metallothioneins: A comparative overview. Cell. Mol. Biol., 46(2), 407-417
  37. Vesk, P.A. and M. Byrne. 1999. Metal levels in tissues granules of the freshwater bivalve Hyridella depressa (Unionida) for biomonitoring: The importance of cryopreparation. Sci. Total Environ., 225, 219-229 https://doi.org/10.1016/S0048-9697(98)00363-5
  38. Wallace, W.G., B.-G. Lee, and S.N. Luoma. 2003. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar. Ecol. Prog. Ser., 249, 183-197 https://doi.org/10.3354/meps249183