Browse > Article

Subcellular Distribution of Heavy Metals in Organs of Bivalve Modiolus Modiolus Living Along a Metal Contamination Gradient  

Podgurskaya, Olga V. (Institute of Marine Biology, Far East Branch, Russian Academy of Sciences)
Kavun, Victor Ya. (Institute of Marine Biology, Far East Branch, Russian Academy of Sciences)
Publication Information
Ocean Science Journal / v.41, no.1, 2006 , pp. 43-51 More about this Journal
Abstract
Concentration and distribution of Fe, Zn, Cu, Cd, Mn, Pb, Ni among subcellular fractions (cellular membrane structures and cytosol) and Zn, Cu, Cd among cytoplasmic proteins in the kidney and digestive gland of mussel Modiolus modiolus living along a polymetallic concentration gradient were studied. It was found in the kidney of M. modiolus from contaminated sites that the Fe percent increased in the "membrane" fraction, whereas Zn, Pb, Ni and Mn percent increased in the cytosol compared to the kidney of the control mussel. Note kidney cytosol of M. modiolus from clean and contaminated sites sequestered major parts of Cu and Cd. In the digestive gland of M. modiolus from contaminated sites Fe, Zn, Cd, Mn, Ni percent increased in the "membrane" fraction, whereas Cu, Pb percent increased in the cytosol compared to digestive gland of control mussel. Gel-filtration chromatography shows kidney of M. modiolus contains increased metallothionein-like protein levels irrespective of ambient dissolved metal concentrations. It was shown that the metal detoxification system in the kidney and digestive gland of M. modiolus was efficient under extremely high ambient metal levels. However, under complex environmental contamination in the kidney of M. modiolus, the metal detoxification capacity of metallothionein-like proteins was damaged.
Keywords
heavy metals; subcellular distribution; metal-binding proteins; contamination;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
1 Campbell, P.G.C., A. Giguere, E. Bonneris, and L. Hare. 2005. Cadmium-handling strategies in two chronically exposed indigenous freshwater organisms – the yellow perch (Perca flavescens) and floater mollusc (Pyganodon grandis). Aquat. Toxicol., 72, 83-97   DOI   ScienceOn
2 Dovzhenko, N.V., A.V. Kurilenko, N.N. Belcheva, and V.P. Chelomin. 2005. Cadmium-induced oxidative stress in the bivalve Modiolus modiolus. Russ. J. Mar. Biol., 31(5), 358-362. (In Russian)
3 Isani, G., G. Andreani, M. Kindt, and E. Carpene. 2000. Metallothionein in marine mollusks. Cell. Mol. Biol., 46(2), 311-330
4 Klein, D., S. Sato, and K.H. Summer. 1994. Quantification of oxidized metallothionein in biological material by a Cd saturation method. Anal. Biochem., 221, 405-409   DOI   ScienceOn
5 Nieboer, E. and D.N.S. Richardson. 1980. The replacement of the nondescript term “heavy metal” by a biologically and chemically significant classification of metal ions. Environ. Poll., 1, 3-26   DOI   ScienceOn
6 Podgurskaya, O.V. and V.Ya. Kavun. 2005. Comparison of the subcellular distribution of heavy metals in organs of the bivalve Crenomytilus grayanus and Modiolus modiolus from a chronically polluted area. Russ. J. Mar. Biol., 31(6), 435-442. (In Russian)
7 Scarlato, O.A. 1981. Bivalves of temperate zones of western part of Pacific Ocean. Nauka, Leningrad. 480 p. (In Russian)
8 Shulkin, V.M. 2004. Metals in the ecosystems of coastal sea shallow waters. Dalnauka, Vladivostok. 279 p. (In Russian)
9 Wallace, W.G., B.-G. Lee, and S.N. Luoma. 2003. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar. Ecol. Prog. Ser., 249, 183-197   DOI
10 Salvini-Plawen, L.V. 1988. The structure and function of molluscan digestive systems. p. 301-379. In: The Mollusca 11, ed. by E.R. Trueman and M.R. Clarke. Academic Press, Orlando, Florida
11 Chelomin, V.P., N.N. Belcheva, and M.V. Zahartsev. 1998. Biochemical mechanisms of adaptation of Mytilus trossulus to cadmium and copper ions. Russ. J. Mar. Biol., 24(5), 319-325. (In Russian)
12 Kaland, T., T. Andersen, and K. Hylland. 1993. Accumulation and subcellular distribution of metals in the marine gastropod Nassarius reticulates. p. 37-55. In: Ecotoxicology of metals in invertebrates, ed. by R. Dallinger and P.S. Rainbow. CRC Press, Boca Raton
13 Choi, H.J., I.-Y. Ahn, S.-K. Ryu, I.-S. Lee, and K.-H. Jeong. 2001. Preliminary evidence for metallothionein-like Cd-binding protein in the kidney of the Antarctic clam Laternula elliptica. Ocean and Polar Res., 23(4), 337-345   과학기술학회마을   DOI
14 Fowler, B.A. 1998. Roles of lead-binding proteins in mediating lead bioavailability. Environ. Health Perspect. Suppl., 106(6), 1585-1587   DOI
15 Fowler, B.A. and G.E. DuVal 1991. Effects of lead on the kidney: Roles of high affinity lead-binding proteins. Environ. Health Perspect. Suppl., 91, 77-80   DOI
16 Frazier, J.M., S.S. George, J. Overnell, T.L. Coombs, and J. Kaji. 1985. Characterization of two molecular weight classes of cadmium binding proteins from the mussel Mytilus edulis (L.). Comp. Biochem. Physiol., 80C, 257-262
17 Ponzano, E., F. Dondero, J.-M. Bouquegneau, R. Sack, P. Hunziker, and A. Viarengo 2001. Purification and biochemical characterization of cadmium metallothionein from the digestive gland of the Antarctic scallop Adamussium colbecki. Polar. Biol., 24, 147-153   DOI   ScienceOn
18 Giguere, A., Y. Couillard, P.G.C. Campbeel, O. Perceval, L. Hare, B. Pinel-Alloul, and J. Pellerin. 2003. Steady-state distribution of metals among metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetallic gradient. Aquat. Toxicol., 64, 185-200   DOI   ScienceOn
19 Riveros, A., M. Zuniga, and A. Larrain. 2003. Copper metallothionein-like proteins as exposure biomarker in native and transplanted intertidal populations of the mussel Perumytilus purpuratus from San Jorge Bay, Antofagasta, Chile. Bull. Environ. Contam. Toxicol., 70, 233-241   DOI
20 Regoli, F. and E. Orlando. 1994. Accumulation and subcellular distribution of metals (Cu, Fe, Mn, Pb and Zn) in the Mediterranean mussel Mytilus galloprovincialis during a field transplant experiment. Mar. Poll. Bul., 28, 592-600   DOI   ScienceOn
21 Conner, E.A. and B.A. Fowler. 1994. Preliminary purification and partial characterization studies of a low-molecular weight cytosolic lead-binding protein in liver of the channel catfish (Ictalurus punctatus). Aquat. Toxicol., 28, 29-36   DOI   ScienceOn
22 Shulkin, V.M., V.Ya. Kavun, and B.J. Presley. 2003. Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environ. Inter., 29, 493-502   DOI   ScienceOn
23 Stohs, S.J. and D. Bagchi. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 18, 321-336   DOI   ScienceOn
24 Pullen, J.S.H. and P.S. Rainbow. 1991. The composition of pyrophosphate heavy metal detoxification granules in barnacles. J. Exp. Mar. Biol. Ecol., 150, 249-266   DOI   ScienceOn
25 Bebianno, M.J. and M.A. Serafim. 2003. Variation of metal and metallothionein concentration in natural population of Ruditapes decussates. Arch. Environ. Contam. Toxicol., 44, 53-66   DOI
26 Kavun, V.Ya. and V.M. Shulkin. 2005. Trace metals variation of the bivalve Crenomytilus grayanus during a field transplant experiment. Russ. J. Mar. Biol., 31(2), 123-128. (In Russian)
27 Podgurskaya, O.V., V.Ya. Kavun, and O.N. Lukyanova. 2004. Heavy metal accumulation and distribution in organs of the mussel Crenomytilus grayanus from upwelling areas of the Okhotsk Sea and Sea of Japan. Russ. J. Mar. Biol., 30(3), 219-226. (In Russian)
28 Roesijadi, G. 1992. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol., 22(2), 81-114   DOI   ScienceOn
29 Vesk, P.A. and M. Byrne. 1999. Metal levels in tissues granules of the freshwater bivalve Hyridella depressa (Unionida) for biomonitoring: The importance of cryopreparation. Sci. Total Environ., 225, 219-229   DOI   ScienceOn
30 Sallivan, P.A., W.E. Robinson, and M.P. Morse. 1988. Subcellular distribution of metals within the kidney of the bivalve Mercenaria mercenaria (L.). Comp. Biochem. Physiol., 91C(2), 589-595
31 Sunda, W.G. and S.A. Huntsman. 1983. Effect of competitive interaction between manganese and copper on cellular manganese and growth in estuarine and oceanic species of the diatome Thalassiosira. Limnol. Oceanogr., 28(5), 924-934   DOI   ScienceOn
32 George, S.G., B.J.S. Pirie, and T.L. Coombs. 1976. The kinetics of accumulation and excretion of ferric hydroxide in Mytilus edulis (L.) and its distribution in tissues. J. Exp. Mar. Biol. 45, 78-84
33 Carpene, E. and S.Y. George. 1981. Absorbtion of cadmium by gills of Mytilus edulus (L.). Mar. Physiol., 1, 23–34
34 Viarengo, A., B. Burlando, N. Ceratto, and I. Panfoli. 2000. Antioxidant role of metallothioneins: A comparative overview. Cell. Mol. Biol., 46(2), 407-417
35 Mouneyrac, C., B. Bertnet, and J.-C. Amiard. 1999. Cd distribution in the tissues of oysters (Crassostrea gigas) exposed chronically in situ. Water Air Soil Pollut., 112, 187-196   DOI   ScienceOn
36 Roesijadi, G. 1997. Metallothionein mRNA induction and generation of reactive oxygen species in molluscan hemocytes exposed to cadmium in vitro. Comp. Biochem. Physiol., 118C(2), 171-176
37 Choi, H.J., I.-Y. Ahn, K.-W. Kim, H.-A. Kim, and I.-S. Lee. 2003. Subcellular distribution of naturally elevated cadmium in the Antarctic clam Laternula elliptica. Bull. Environ. Contam. Toxicol., 71, 83-89   DOI
38 Bonneris, E., A. Giguere, O. Perceval, T. Buronfosse, S. Masson, L. Hare, and P.G.C. Campbell. 2005. Sub-cellular partitioning of metals (Cd, Cu, Zn) in the gills of a freshwater bivalve, Pyganodon grandis: Role of calcium concretions in metal sequestration. Aquat. Toxicol., 71, 319-334   DOI   ScienceOn