• 제목/요약/키워드: metabolomic approach

검색결과 24건 처리시간 0.017초

NMR-based Metabolomic Responses of Zebrafish (Danio Rerio) by Fipronil Exposure

  • Lee, Sujin;Oh, Sangah;Kim, Seonghye;Lee, Wonho;Choi, Juyoung;Lee, Hani;Lee, Yujin;Kim, Suhkmann
    • 한국자기공명학회논문지
    • /
    • 제24권4호
    • /
    • pp.104-116
    • /
    • 2020
  • Fipronil, the phenylpyrazole insecticide, is effective and used in various fields. Especially, fipronil was reliable because it was known to be specific on invertebrate animals than vertebrate animals including mammals. However, fipronil had potential risks that affect vertebrate animals as it blocks the gamma-aminobutyric acid (GABA) receptors that also exists in vertebrates as well as invertebrates. Therefore, it was necessary that harmful effects of fipronil on vertebrates are clarified. For this purpose, the zebrafish (Danio rerio) were used on behalf of vertebrate animals in present study. The zebrafish were exposed to 5 ㎍/L, 25 ㎍/L, and 50 ㎍/L of fipronil during 12, 24 and 72 hours. To closely observe toxic process, 12 hours and 24 hours of additional time point were set in the exposure test. Nuclear magnetic resonance (NMR)-based metabolomics is an approach to detect metabolic changes in organism resulted from external stimuli. In this study, NMR-based metabolomics showed the metabolic changes in zebrafish caused by fipronil exposure. Metabolic analysis revealed that fipronil interfered with energy metabolism and decreased the antioxidant ability in zebrafish. Antioxidant ability decline was remarkable at high exposure concentration. In addition, metabolic analysis results over time suggested that reactions for alleviating the excessive nerve excitation occurred in zebrafish after fipronil exposure. Through this study, it was elucidated that the adverse effects of fipronil on vertebrate animals are evident. The risk of fipronil on vertebrates can be no longer ignored. Moreover, this study has a meaning of practically necessary research for organism by examining the effects of fipronil at low concentrations existed in real environment.

Specific urinary metabolites in canine mammary gland tumors

  • Valko-Rokytovska, Marcela;Ocenas, Peter;Salayova, Aneta;Titkova, Radka;Kostecka, Zuzana
    • Journal of Veterinary Science
    • /
    • 제21권2호
    • /
    • pp.23.1-23.10
    • /
    • 2020
  • The identification of biomarkers that distinguish diseased from healthy individuals is of great interest in human and veterinary fields. In this research area, a metabolomic approach and its related statistical analyses can be useful for biomarker determination and allow non-invasive discrimination of healthy volunteers from breast cancer patients. In this study, we focused on the most common canine neoplasm, mammary gland tumor, and herein, we describe a simple method using ultra-high-performance liquid chromatography to determine the levels of tyrosine and its metabolites (epinephrine, 3,4-dihydroxy-L-phenylalanine, 3,4-dihydroxyphenylacetic acid, and vanillylmandelic acid), tryptophan and its metabolites (5-hydroxyindolacetic acid, indoxyl sulfate, serotonin, and kynurenic acid) in canine mammary cancer urine samples. Our results indicated significantly increased concentrations of three tryptophan metabolites, 5-hydroxyindolacetic acid (p < 0.001), serotonin, indoxyl sulfate (p < 0.01), and kynurenic acid (p < 0.05), and 2 tyrosine metabolites, 3,4-dihydroxy-L-phenylalanine (p < 0.001), and epinephrine (p < 0.05) in urine samples from the mammary gland tumor group compared to concentrations in urine samples from the healthy group. The results indicate that select urinary tyrosine and tryptophan metabolites may be useful as non-invasive diagnostic markers as well as in developing a therapeutic strategy for canine mammary gland tumors.

Identification of Urinary Biomarkers Related to Cisplatin-Induced Acute Renal Toxicity Using NMR-Based Metabolomics

  • Wen, He;Yang, Hye-Ji;Choi, Myung-Joo;Kwon, Hyuk-Nam;Kim, Min-Ah;Hong, Soon-Sun;Park, Sung-Hyouk
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.38-44
    • /
    • 2011
  • Cisplatin is widely used for various types of cancers. However, its side effects, most notably, renal toxicity often limit its clinical utility. Although previous metabolomic studies reported possible toxicity markers, they used small number of animals and statistical approaches that may not perform best in the presence of intra-group variation. Here, we identified urinary biomarkers associated with renal toxicity induced by cisplatin using NMR-based metabolomics combined with Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA). Male Sprague-Dawley rats (n=22) were treated with cisplatin (10 mg/kg single dose), and the urines obtained before and after treatment were analyzed by NMR. Multivariable analysis of NMR data presented clear separation between non-treated and treated groups. The OPLS-DA statistical results revealed that 1,3-dimethylurate, taurine, glucose, glycine and branched-chain amino acid (isoleucine, leucine and valine) were significantly elevated in the treated group and that phenylacetylglycine and sarcosine levels were decreased in the treated group. To test the robustness of the approach, we built a prediction model for the toxicity and were able to predict all the unknown samples (n=14) correctly. We believe the proposed NMR-based metabolomics with OPLS-DA approach and the resulting urine markers can be used to augment the currently available blood markers.

Alternaria mycotoxins and its incidence in fruits and vegetables

  • Patriarca, Andrea
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2018년도 춘계학술대회 및 임시총회
    • /
    • pp.13-13
    • /
    • 2018
  • Alternaria is a ubiquitous fungal genus, widely distributed in the environment and a range of different habitats. It includes both plant pathogenic and saprophytic species, which can affect crops in the field or cause post-harvest spoilage of plant fruits and kernels. Numerous Alternaria species cause damage to agricultural products including cereal grains, fruits and vegetables, and are responsible for severe economic losses worldwide. Most Alternaria species have the ability to produce a variety of secondary metabolites, which may play important roles in plant pathology as well as food quality and safety. Alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), tentoxin (TEN) and altenuene (ALT) are considered the main Alternaria compounds thought to pose a risk to human health. However, food-borne Alternaria species are able to produce many additional metabolites, whose toxicity has been tested incompletely or not tested at all. Both alternariols are mutagenic and their presence in cereal grain has been associated with high levels of human esophageal cancer in China. TeA exerts cytotoxic and phytotoxic properties, and is acutely toxic in different animal species, causing hemorrhages in several organs. The possible involvement of TA in the etiology of onyalai, a human hematological disorder occurring in Africa, has been suggested. Altertoxins (ALXs) have been found to be more potent mutagens and acutely toxic to mice than AOH and AME. Other metabolites, such as TEN, are reported to be phytotoxins, and their toxicity on animals has not been demonstrated up to now. Vegetable foods infected by Alternaria rot are obviously not suitable for consumption. Thus, whole fresh fruits are not believed to contribute significantly with Alternaria toxins to human exposure. However, processed vegetable products may introduce considerable amounts of these toxins to the human diet if decayed or moldy fruit is not removed before processing. The taxonomy of the genus is not well defined yet, which makes it difficult to establish an accurate relationship between the contaminant species and their associated mycotoxins. Great efforts have been made to organize taxa into subgeneric taxonomic levels, especially for the small-spored, food associated species, which are closely related and constitute the most relevant food pathogens from this genus. Several crops of agricultural value are susceptible to infection by different Alternaria species and can contribute to the entry of Alternaria mycotoxins in the food chain. The distribution of Alternaria species was studied in different commodities grown in Argentina. These food populations were characterized through a polyphasic approach, with special interest in their secondary metabolite profiles, to understand their full chemical potential. Alternaria species associated with tomato, bell pepper, blueberry, apples and wheat cultivated in Argentina showed a surprisingly high metabolomic and mycotoxigenic potential. The natural occurrence of Alternaria toxins in these foods was also investigated. The results here presented will provide background for discussion on regulations for Alternaria toxins in foods.

  • PDF