DOI QR코드

DOI QR Code

Specific urinary metabolites in canine mammary gland tumors

  • Valko-Rokytovska, Marcela (Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Kosice) ;
  • Ocenas, Peter (Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Kosice) ;
  • Salayova, Aneta (Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Kosice) ;
  • Titkova, Radka (Section of Surgery, Orthopaedics, Roentgenology and Reproduction, Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice) ;
  • Kostecka, Zuzana (Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Kosice)
  • Received : 2019.07.23
  • Accepted : 2019.11.30
  • Published : 2020.03.31

Abstract

The identification of biomarkers that distinguish diseased from healthy individuals is of great interest in human and veterinary fields. In this research area, a metabolomic approach and its related statistical analyses can be useful for biomarker determination and allow non-invasive discrimination of healthy volunteers from breast cancer patients. In this study, we focused on the most common canine neoplasm, mammary gland tumor, and herein, we describe a simple method using ultra-high-performance liquid chromatography to determine the levels of tyrosine and its metabolites (epinephrine, 3,4-dihydroxy-L-phenylalanine, 3,4-dihydroxyphenylacetic acid, and vanillylmandelic acid), tryptophan and its metabolites (5-hydroxyindolacetic acid, indoxyl sulfate, serotonin, and kynurenic acid) in canine mammary cancer urine samples. Our results indicated significantly increased concentrations of three tryptophan metabolites, 5-hydroxyindolacetic acid (p < 0.001), serotonin, indoxyl sulfate (p < 0.01), and kynurenic acid (p < 0.05), and 2 tyrosine metabolites, 3,4-dihydroxy-L-phenylalanine (p < 0.001), and epinephrine (p < 0.05) in urine samples from the mammary gland tumor group compared to concentrations in urine samples from the healthy group. The results indicate that select urinary tyrosine and tryptophan metabolites may be useful as non-invasive diagnostic markers as well as in developing a therapeutic strategy for canine mammary gland tumors.

Keywords

Acknowledgement

Realization of this study was supported by the Internal Grant Agency - IGA UVLF 05/2017, Urinary biochemical profile of cancer diseases with potential use in diagnostic practice, Kosice, Slovakia.

References

  1. Pena L, Gama A, Goldschmidt MH, Abadie J, Benazzi C, Castagnaro M, Diez L, Gartner F, Hellmen E, Kiupel M, Millan Y, Miller MA, Nguyen F, Poli A, Sarli G, Zappulli V, de las Mulas JM. Canine mammary tumors: a review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry. Vet Pathol 2014;51:127-145. https://doi.org/10.1177/0300985813509388
  2. Sorenmo K. Canine mammary gland tumors. Vet Clin North Am Small Anim Pract 2003;33:573-596. https://doi.org/10.1016/S0195-5616(03)00020-2
  3. Concannon PW, Spraker TR, Casey HW, Hansel W. Gross and histopathologic effects of medroxyprogesterone acetate and progesterone on the mammary glands of adult beagle bitches. Fertil Steril 1981;36:373-387. https://doi.org/10.1016/S0015-0282(16)45741-9
  4. Sorenmo KU, Kristiansen VM, Cofone MA, Shofer FS, Breen AM, Langeland M, Mongil CM, Grondahl AM, Teige J, Goldschmidt MH. Canine mammary gland tumours; a histological continuum from benign to malignant; clinical and histopathological evidence. Vet Comp Oncol 2009;7:162-172. https://doi.org/10.1111/j.1476-5829.2009.00184.x
  5. Moe L. Population-based incidence of mammary tumours in some dog breeds. J Reprod Fertil Suppl 2001;57:439-443.
  6. Nguyen F, Pena L, Ibisch C, Loussouarn D, Gama A, Rieder N, Belousov A, Campone M, Abadie J. Canine invasive mammary carcinomas as models of human breast cancer. Part 1: natural history and prognostic factors. Breast Cancer Res Treat 2018;167:635-648. https://doi.org/10.1007/s10549-017-4548-2
  7. Johnson CH, Manna SK, Krausz KW, Bonzo JA, Divelbiss RD, Hollingshead MG, Gonzalez FJ. Global metabolomics reveals urinary biomarkers of breast cancer in a mcf-7 xenograft mouse model. Metabolites 2013;3:658-672. https://doi.org/10.3390/metabo3030658
  8. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009;37:1-17. https://doi.org/10.1007/s00726-009-0269-0
  9. Wiggins T, Kumar S, Markar SR, Antonowicz S, Hanna GB. Tyrosine, phenylalanine, and tryptophan in gastroesophageal malignancy: a systematic review. Cancer Epidemiol Biomarkers Prev 2015;24:32-38. https://doi.org/10.1158/1055-9965.EPI-14-0980
  10. Oto J, Suzue A, Inui D, Fukuta Y, Hosotsubo K, Torii M, Nagahiro S, Nishimura M. Plasma proinflammatory and anti-inflammatory cytokine and catecholamine concentrations as predictors of neurological outcome in acute stroke patients. J Anesth 2008;22:207-212. https://doi.org/10.1007/s00540-008-0639-x
  11. Heng B, Lim CK, Lovejoy DB, Bessede A, Gluch L, Guillemin GJ. Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget 2016;7:6506-6520. https://doi.org/10.18632/oncotarget.6467
  12. Kuo TR, Chen JS, Chiu YC, Tsai CY, Hu CC, Chen CC. Quantitative analysis of multiple urinary biomarkers of carcinoid tumors through gold-nanoparticle-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chim Acta 2011;699:81-86. https://doi.org/10.1016/j.aca.2011.05.012
  13. Chung KT, Gadupudi GS. Possible roles of excess tryptophan metabolites in cancer. Environ Mol Mutagen 2011;52:81-104. https://doi.org/10.1002/em.20588
  14. Mulder EJ, Anderson GM, Kemperman RF, Oosterloo-Duinkerken A, Minderaa RB, Kema IP. Urinary excretion of 5-hydroxyindoleacetic acid, serotonin and 6-sulphatoxymelatonin in normoserotonemic and hyperserotonemic autistic individuals. Neuropsychobiology 2010;61:27-32. https://doi.org/10.1159/000258640
  15. Porto-Figueira P, Pereira JA, Camara JS. Exploring the potential of needle trap microextraction combined with chromatographic and statistical data to discriminate different types of cancer based on urinary volatomic biosignature. Anal Chim Acta 2018;1023:53-63. https://doi.org/10.1016/j.aca.2018.04.027
  16. Chen Y, Zhang R, Song Y, He J, Sun J, Bai J, An Z, Dong L, Zhan Q, Abliz Z. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst (Lond) 2009;134:2003-2011. https://doi.org/10.1039/b907243h
  17. Cascino A, Cangiano C, Ceci F, Franchi F, Mineo T, Mulieri M, Muscaritoli M, Rossi Fanelli F. Increased plasma free tryptophan levels in human cancer: a tumor related effect? Anticancer Res 1991;11:1313-1316.
  18. Valko-Rokytovska M, Ocenas P, Salayova A, Kostecka Z. New developed UHPLC method for selected urine metabolites. J Chromatogr Sep Tech 2018;9:1000404.
  19. Nam H, Chung BC, Kim Y, Lee K, Lee D. Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification. Bioinformatics 2009;25:3151-3157. https://doi.org/10.1093/bioinformatics/btp558
  20. Mishra P, Ambs S. Metabolic signatures of human breast cancer. Mol Cell Oncol 2015;2:e992217. https://doi.org/10.4161/23723556.2014.992217
  21. Prendergast GC. Cancer: why tumours eat tryptophan. Nature 2011;478:192-194. https://doi.org/10.1038/478192a
  22. Jose J, Tavares CD, Ebelt ND, Lodi A, Edupuganti R, Xie X, Devkota AK, Kaoud TS, Van Den Berg CL, Anslyn EV, Tiziani S, Bartholomeusz C, Dalby KN. Serotonin analogues as inhibitors of breast cancer cell growth. ACS Med Chem Lett 2017;8:1072-1076. https://doi.org/10.1021/acsmedchemlett.7b00282
  23. Miller AG, Brown H, Degg T, Allen K, Keevil BG. Measurement of plasma 5-hydroxyindole acetic acid by liquid chromatography tandem mass spectrometry--comparison with HPLC methodology. J Chromatogr B Analyt Technol Biomed Life Sci 2010;878:695-699. https://doi.org/10.1016/j.jchromb.2010.01.010
  24. Yamaguchi J, Tanaka T, Inagi R. Effect of AST-120 in chronic kidney disease treatment: still a controversy? Nephron 2017;135:201-206. https://doi.org/10.1159/000453673
  25. Sagan D, Kocki T, Patel S, Kocki J. Utility of kynurenic acid for non-invasive detection of metastatic spread to lymph nodes in non-small cell lung cancer. Int J Med Sci 2015;12:146-153. https://doi.org/10.7150/ijms.7541
  26. Xie Z, Lorkiewicz P, Riggs DW, Bhatnagar A, Srivastava S. Comprehensive, robust, and sensitive UPLCMS/MS analysis of free biogenic monoamines and their metabolites in urine. J Chromatogr B Analyt Technol Biomed Life Sci 2018;1099:83-91. https://doi.org/10.1016/j.jchromb.2018.09.012
  27. Muthuswamy R, Okada NJ, Jenkins FJ, McGuire K, McAuliffe PF, Zeh HJ, Bartlett DL, Wallace C, Watkins S, Henning JD, Bovbjerg DH, Kalinski P. Epinephrine promotes COX-2-dependent immune suppression in myeloid cells and cancer tissues. Brain Behav Immun 2017;62:78-86. https://doi.org/10.1016/j.bbi.2017.02.008
  28. Barollo S, Bertazza L, Watutantrige-Fernando S, Censi S, Cavedon E, Galuppini F, Pennelli G, Fassina A, Citton M, Rubin B, Pezzani R, Benna C, Opocher G, Iacobone M, Mian C. Overexpression of L-Type amino acid transporter 1 (LAT1) and 2 (LAT2): Novel markers of neuroendocrine tumors. PLoS One 2016;11:e0156044. https://doi.org/10.1371/journal.pone.0156044
  29. Zhang A, Sun H, Wang P, Han Y, Wang X. Recent and potential developments of biofluid analyses in metabolomics. J Proteomics 2012;75:1079-1088. https://doi.org/10.1016/j.jprot.2011.10.027
  30. McCartney A, Vignoli A, Biganzoli L, Love R, Tenori L, Luchinat C, Di Leo A. Metabolomics in breast cancer: a decade in review. Cancer Treat Rev 2018;67:88-96. https://doi.org/10.1016/j.ctrv.2018.04.012