• Title/Summary/Keyword: metabolite profiling

Search Result 86, Processing Time 0.039 seconds

1H NMR-based metabolomic study of Cornus officinalis from different geographical origin

  • Jung, Young-Ae;Jung, Young-Sang;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.90-103
    • /
    • 2011
  • Cornus officinalis (Cornaceae) is primarily grown in Asian countries. The pericarp of C. officinalis (Corni Fructus) is a well-known traditional medicine with tonic, analgesic, and diuretic properties. We analyzed methanolic extracts of Corni Fructus (grown in Korea and China) by $^1H$ NMR spectroscopy. Metabolite profiling was performed to characterize the metabolic difference between different Corni Fructus origins (Korea or China). Principal components analysis revealed significant separation between Comus Fructus from different origins. The metabolites responsible for differences were identified using loading plots, coefficients plots, and variable influence on projection followed by t-tests. As a result, 16 metabolites were identified and quantified; tyrosine, acetate, sucrose, and malate differed the most between origins. These data suggest that NMR-based metabolomics can be used to identify differences between Corni Fructus samples obtained from different regions.

Multivariate Analysis on 1H-NMR Spectroscopy of Olive Flounder Paralichthys olivaceus Serum (1H-NMR 스펙트럼의 다변량통계분석을 통한 넙치(Paralichthys olivaceus)의 백신 반응의 지표물질 분석)

  • Cho, Ji-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.4
    • /
    • pp.367-371
    • /
    • 2012
  • To investigate the relationship between metabolic changes in $^1H$-nuclear magnetic resonance (NMR) spectra and fish vaccination, serum was collected from olive flounders treated with a formalin-killed Edwardsiella tarda vaccine and used for $^1H$-NMR metabolite profiling. Principal component analysis and partial least squares were applied to the $^1H$-NMR profile to reduce its complexity and establish class-related clusters. Relative lipid regions were distinguished in vaccinated and non-vaccinated serum. Then, the lipids were extracted from the serum and analyzed. Triolein was identified.

APPLICATION OF METABOLITE PROFILE KINETICS FOR EXPOSURE AND RISK ASSESSMENT

  • Lee, Byung-Mu
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.34-45
    • /
    • 2006
  • Chemical toxicants are metabolically converted to numerous metabolites in the body. Toxicokinetic characteristics of metabolites could be therefore used as biomarker of exposure for human risk assessment. Biologically based dose response (BBDR) model was proposed for future direction of risk assessment. However, this area has not been developed well enough for human application. Benzo(a)pyrene (BP), for example, is a well-known environmental carcinogen and may produce more than 100 metabolites and BPDE-DNA adduct, a covalently bound form of DNA with benzo(a)pyrene diolepoxides (BPDES), has been applied to qualitatively or quantitaively estimate human exposure to BP. In addition, di(2-ethylhexyl) phthalate (DEHP), a widely used plasticize. in the polymer industry, is one of endocrine-disrupting chemicals (EDCs) and has been monitored in humans using urinary or serum concentrations of DEHP or its monomer MEHP for exposure and risk assessment. However, it is difficult to estimate the actual level of toxicants using these biomarkers in humans using. This presentation will discuss a methodology of exposure and risk assessment by application of metabolic profiling kinetics.

  • PDF

Evaluation of Adverse Drug Properties with Cryopreserved Human Hepatocytes and the Integrated Discrete Multiple Organ Co-culture (IdMOCTM) System

  • Li, Albert P.
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.137-149
    • /
    • 2015
  • Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent the gold standard for in vitro evaluation of drug metabolism, drug-drug interactions, and hepatotoxicity. Successful cryopreservation of human hepatocytes enables this experimental system to be used routinely. The use of human hepatocytes to evaluate two major adverse drug properties: drug-drug interactions and hepatotoxicity, are summarized in this review. The application of human hepatocytes in metabolism-based drug-drug interaction includes metabolite profiling, pathway identification, P450 inhibition, P450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. A novel system, the Integrated Discrete Multiple Organ Co-culture (IdMOC) which allows the evaluation of nonhepatic toxicity in the presence of hepatic metabolism, is described.

High-resolution 1H NMR Spectroscopy of Green and Black Teas

  • Jeong, Ji-Ho;Jang, Hyun-Jun;Kim, Yongae
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.78-84
    • /
    • 2019
  • High-resolution $^1H$ NMR spectroscopic technique has been widely used as one of the most powerful analytical tools in food chemistry as well as to define molecular structure. The $^1H$ NMR spectra-based metabolomics has focused on classification and chemometric analysis of complex mixtures. The principal component analysis (PCA), an unsupervised clustering method and used to reduce the dimensionality of multivariate data, facilitates direct peak quantitation and pattern recognition. Using a combination of these techniques, the various green teas and black teas brewed were investigated via metabolite profiling. These teas were characterized based on the leaf size and country of cultivation, respectively.

Metabolite Profiling of Serum from Patients with Tuberculosis

  • Park, Hee-Bin;Yoo, Min-Gyu;Choi, Sangho;Kim, Seong-Han;Chu, Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.264-268
    • /
    • 2021
  • Tuberculosis (TB) is a major infectious disease that threatens the life and health of people globally. Here, we performed a metabolomic analysis of serum samples from patients with intractable TB to identify biomarkers that might shorten the TB treatment period. Serum samples collected at the commencement of patients' treatment and healthy controls were analyzed using the capillary electrophoresis and time-of-flight mass spectrometry metabolome analysis method. The analysis identified the metabolites cystine, kynurenine, glyceric acid, and cystathionine, which might be useful markers for monitoring the TB treatment course. Furthermore, our research may provide experimental data to develop potential biomarkers in the TB treatment course.

Development and Metabolite Profiling of Elephant Garlic Vinegar

  • Kim, Jeong-Won;Jeong, Deokyeol;Lee, Youngsuk;Hahn, Dongyup;Nam, Ju-Ock;Lee, Won-Young;Hong, Dong-Hyuck;Kim, Soo Rin;Ha, Yu Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • Elephant garlic (Allium ampeloprasum var. ampeloprasum), which belongs to the Alliaceae family along with onion and garlic, has a flavor and shape similar to those of normal garlic but is not true garlic. Additionally, its properties are largely unknown, and its processing and product development have not been reported. In this study, we focused on using elephant garlic to produce a new type of vinegar, for which the market is rapidly growing because of its health benefits. First, we evaluated the effects of elephant garlic addition on acetic acid fermentation of rice wine by Acetobacter pasteurianus. In contrast to normal garlic, for which 2% (w/v) addition completely halted fermentation, addition of elephant garlic enabled slow but successful fermentation of ethanol to acetic acid. Metabolite analysis suggested that sulfur-containing volatile compounds were less abundant in elephant garlic than in normal garlic; these volatile compounds may be responsible for inhibiting acetic acid fermentation. After acetic acid fermentation, vinegar with elephant garlic did not have any sulfur-containing volatile compounds, which could positively contribute to the vinegar flavor. Moreover, the amino acid profile of the vinegar suggested that nutritional and sensory properties were more enhanced following addition of elephant garlic. Thus, elephant garlic may have applications in the development of a new vinegar product with improved flavor and quality and potential health benefits.

Metabolomic profiling of postmortem aged muscle in Japanese Brown beef cattle revealed an interbreed difference from Japanese Black beef

  • Susumu Muroya;Riko Nomura;Hirotaka Nagai;Koichi Ojima;Kazutsugu Matsukawa
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.506-520
    • /
    • 2023
  • Objective: Japanese Brown (JBR) cattle, especially the Kochi (Tosa) pedigree (JBRT), is a local breed of moderately marbled beef. Despite the increasing demand, the interbreed differences in muscle metabolites from the highly marbled Japanese Black (JBL) beef remain poorly understood. We aimed to determine flavor-related metabolites and postmortem metabolisms characteristic to JBRT beef in comparison with JBL beef. Methods: Lean portions of the longissimus thoracis (loin) muscle from four JBRT cattle were collected at 0, 1, and 14 d postmortem. The muscle metabolomic profiles were analyzed using capillary electrophoresis time-of-flight mass spectrometry. The difference in post-mortem metabolisms and aged muscle metabolites were analyzed by statistical and bioinformatic analyses between JBRT (n = 12) and JBL cattle (n = 6). Results: A total of 240 metabolite annotations were obtained from the detected signals of the JBRT muscle samples. Principal component analysis separated the beef samples into three different aging point groups. According to metabolite set enrichment analysis, post-mortem metabolic changes were associated with the metabolism of pyrimidine, nicotinate and nicotinamide, purine, pyruvate, thiamine, amino sugar, and fatty acid; citric acid cycle; and pentose phosphate pathway as well as various amino acids and mitochondrial fatty acid metabolism. The aged JBRT beef showed higher ultimate pH and lower lactate content than aged JBL beef, suggesting the lower glycolytic activity in postmortem JBRT muscle. JBRT beef was distinguished from JBL beef by significantly different compounds, including choline, amino acids, uridine monophosphate, inosine 5'-monophosphate, fructose 1,6-diphosphate, and betaine, suggesting interbreed differences in the accumulation of nucleotide monophosphate, glutathione metabolism, and phospholipid metabolism. Conclusion: Glycolysis, purine metabolism, fatty acid catabolism, and protein degradation were the most common pathways in beef during postmortem aging. The differentially expressed metabolites and the relevant metabolisms in JBRT beef may contribute to the development of a characteristic flavor.

Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng

  • Lee, Mee Youn;Seo, Han Sol;Singh, Digar;Lee, Sang Jun;Lee, Choong Hwan
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.413-423
    • /
    • 2020
  • Background: Ginseng berries (GBs) show temporal metabolic variations among different maturation stages, determining their organoleptic and functional properties. Methods: We analyzed metabolic variations concomitant to five different maturation stages of GBs including immature green (IG), mature green (MG), partially red (PR), fully red (FR), and overmature red (OR) using mass spectrometry (MS)-based metabolomic profiling and multivariate analyses. Results: The partial least squares discriminant analysis score plot based on gas chromatography-MS datasets highlighted metabolic disparity between preharvest (IG and MG) and harvest/postharvest (PR, FR, and OR) GB extracts along PLS1 (34.9%) with MG distinctly segregated across PLS2 (18.2%). Forty-three significantly discriminant primary metabolites were identified encompassing five developmental stages (variable importance in projection > 1.0, p < 0.05). Among them, most amino acids, organic acids, 5-C sugars, ethanolamines, purines, and palmitic acid were detected in preharvest GB extracts, whereas 6-C sugars, phenolic acid, and oleamide levels were distinctly higher during later maturation stages. Similarly, the partial least squares discriminant analysis based on liquid chromatography-MS datasets displayed preharvest and harvest/postharvest stages clustered across PLS1 (11.1 %); however, MG and PR were separated from IG, FR, and OR along PLS2 (5.6 %). Overall, 24 secondary metabolites were observed significantly discriminant (variable importance in projection > 1.0, p < 0.05), with most displaying higher relative abundance during preharvest stages excluding ginsenosides Rg1 and Re. Furthermore, we observed strong positive correlations between total flavonoid and phenolic metabolite contents in GB extracts and antioxidant activity. Conclusion: Comprehending the dynamic metabolic variations associated with GB maturation stages rationalize their optimal harvest time per se the related agroeconomic traits.