Browse > Article
http://dx.doi.org/10.5487/TR.2015.31.2.137

Evaluation of Adverse Drug Properties with Cryopreserved Human Hepatocytes and the Integrated Discrete Multiple Organ Co-culture (IdMOCTM) System  

Li, Albert P. (In Vitro ADMET Laboratories LLC)
Publication Information
Toxicological Research / v.31, no.2, 2015 , pp. 137-149 More about this Journal
Abstract
Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent the gold standard for in vitro evaluation of drug metabolism, drug-drug interactions, and hepatotoxicity. Successful cryopreservation of human hepatocytes enables this experimental system to be used routinely. The use of human hepatocytes to evaluate two major adverse drug properties: drug-drug interactions and hepatotoxicity, are summarized in this review. The application of human hepatocytes in metabolism-based drug-drug interaction includes metabolite profiling, pathway identification, P450 inhibition, P450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. A novel system, the Integrated Discrete Multiple Organ Co-culture (IdMOC) which allows the evaluation of nonhepatic toxicity in the presence of hepatic metabolism, is described.
Keywords
Human hepatocytes; IdMOC; Hepatocyte cryopreservation; Drug metabolism; Drug-drug interactions; Drug toxicity; Drug development;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kola, I. and Landis, J. (2004) Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discovery, 3, 711-715.   DOI   ScienceOn
2 Li, A.P. (2004) Accurate prediction of human drug toxicity: a major challenge in drug development. Chem. Biol. Interact., 150, 3-7.   DOI   ScienceOn
3 Li, A.P. (2010) Evaluation of drug metabolism, drug-drug interactions, and in vitro hepatotoxicity with cryopreserved human hepatocytes. Methods Mol. Biol., 640, 281-294.   DOI   ScienceOn
4 Baillie, T.A. and Rettie, A.E. (2011) Role of biotransformation in drug-induced toxicity: influence of intra- and interspecies differences in drug metabolism. Drug Metab. Pharmacokinet., 26, 15-29.   DOI   ScienceOn
5 Easterbrook, J., Fackett, D. and Li, A.P. (2001) A comparison of aroclor 1254-induced and uninduced rat liver microsomes to human liver microsomes in phenytoin O-deethylation, coumarin 7-hydroxylation, tolbutamide 4-hydroxylation, S-mephenytoin 4'-hydroxylation, chloroxazone 6-hydroxylation and testosterone 6beta-hydroxylation. Chem. Biol. Interact., 134, 243-249.   DOI   ScienceOn
6 Lee, K., Vandenberghe, Y., Herin, M., Cavalier, R., Beck, D., Li, A., Verbeke, N., Lesne, M. and Roba, J. (1994) Comparative metabolism of SC-42867 and SC-51089, two PGE2 antagonists, in rat and human hepatocyte cultures. Xenobiotica, 24, 25-36.   DOI
7 Montastruc, F., Sommet, A., Bondon-Guitton, E., Durrieu, G., Bui, E., Bagheri, H., Lapeyre-Mestre, M., Schmitt, L. and Montastruc, J.L. (2012) The importance of drug-drug interactions as a cause of adverse drug reactions: a pharmacovigilance study of serotoninergic reuptake inhibitors in France. Eur. J. Clin. Pharmacol., 68, 767-775.   DOI   ScienceOn
8 De Bruyn, T., Ye, Z.W., Peeters, A., Sahi, J., Baes, M., Augustijns, P.F. and Annaert, P.P. (2011) Determination of OATP-, NTCP- and OCT-mediated substrate uptake activities in individual and pooled batches of cryopreserved human hepatocytes. Eur. J. Pharm. Sci., 43, 297-307.   DOI   ScienceOn
9 Kimoto, E., Yoshida, K., Balogh, L.M., Bi, Y.A., Maeda, K., El-Kattan, A., Sugiyama, Y. and Lai, Y. (2012) Characterization of organic anion transporting polypeptide (OATP) expression and its functional contribution to the uptake of substrates in human hepatocytes. Mol. Pharmaceutics, 9, 3535-3542.   DOI
10 Maeda, K., Kambara, M., Tian, Y., Hofmann, A.F. and Sugiyama, Y. (2006) Uptake of ursodeoxycholate and its conjugates by human hepatocytes: role of Na(+)-taurocholate cotransporting polypeptide (NTCP), organic anion transporting polypeptide (OATP) 1B1 (OATP-C), and oatp1B3 (OATP8). Mol. Pharmaceutics, 3, 70-77.   DOI   ScienceOn
11 Shitara, Y., Li, A.P., Kato, Y., Lu, C., Ito, K., Itoh, T. and Sugiyama, Y. (2003) Function of uptake transporters for taurocholate and estradiol 17beta-D-glucuronide in cryopreserved human hepatocytes. Drug Metab. Pharmacokinet., 18, 33-41.   DOI   ScienceOn
12 Li, N., Zhang, Y., Hua, F. and Lai, Y. (2009) Absolute difference of hepatobiliary transporter multidrug resistance-associated protein (MRP2/Mrp2) in liver tissues and isolated hepatocytes from rat, dog, monkey, and human. Drug Metab. Dispos., 37, 66-73.   DOI   ScienceOn
13 Li, M., Yuan, H., Li, N., Song, G., Zheng, Y., Baratta, M., Hua, F., Thurston, A., Wang, J. and Lai, Y. (2008) Identification of interspecies difference in efflux transporters of hepatocytes from dog, rat, monkey and human. Eur. J. Pharm. Sci., 35, 114-126.   DOI   ScienceOn
14 Bi, Y.A., Kazolias, D. and Duignan, D.B. (2006) Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab. Dispos., 34, 1658-1665.   DOI   ScienceOn
15 Lai, Y., Sampson, K.E. and Stevens, J.C. (2010) Evaluation of drug transporter interactions in drug discovery and development. Comb. Chem. High Throughput Screening, 13, 112-134.   DOI   ScienceOn
16 Offermann, G., Keller, F. and Molzahn, M. (1985) Low cyclosporin A blood levels and acute graft rejection in a renal transplant recipient during rifampin treatment. Am. J. Nephrol., 5, 385-387.   DOI
17 Muller, F. and Fromm, M.F. (2011) Transporter-mediated drug-drug interactions. Pharmacogenomics, 12, 1017-1037.   DOI   ScienceOn
18 Zhang, L., Huang, S.M. and Lesko, L.J. (2011) Transporter-mediated drug-drug interactions. Clin. Pharmacol. Ther., 89, 481-484.   DOI   ScienceOn
19 Tsuji, A. (2002) Transporter-mediated Drug Interactions. Drug Metab. Pharmacokinet., 17, 253-274.   DOI   ScienceOn
20 Maeda, K. and Sugiyama, Y. (2013) Transporter biology in drug approval: regulatory aspects. Mol. Aspects Med., 34, 711-718.   DOI   ScienceOn
21 Zamek-Gliszczynski, M.J., Hoffmaster, K.A., Tweedie, D.J., Giacomini, K.M. and Hillgren, K.M. (2012) Highlights from the International Transporter Consortium second workshop. Clin. Pharmacol. Ther., 92, 553-556.   DOI
22 Zhang, L., Zhang, Y.D., Strong, J.M., Reynolds, K.S. and Huang, S.M. (2008) A regulatory viewpoint on transporterbased drug interactions. Xenobiotica, 38, 709-724.   DOI   ScienceOn
23 Lee, J.I., Zhang, L., Men, A.Y., Kenna, L.A. and Huang, S.M. (2010) CYP-mediated therapeutic protein-drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin. Pharmacokinet., 49, 295-310.   DOI   ScienceOn
24 Rautio, J., Humphreys, J.E., Webster, L.O., Balakrishnan, A., Keogh, J.P., Kunta, J.R., Serabjit-Singh, C.J. and Polli, J.W. (2006) In vitro p-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab. Dispos., 34, 786-792.   DOI   ScienceOn
25 Halladay, J.S., Wong, S., Khojasteh, S.C. and Grepper, S. (2012) An 'all-inclusive' 96-well cytochrome P450 induction method: measuring enzyme activity, mRNA levels, protein levels, and cytotoxicity from one well using cryopreserved human hepatocytes. J. Pharmacol. Toxicol. Methods, 66, 270-275.   DOI   ScienceOn
26 Einolf, H.J., Chen, L., Fahmi, O.A., Gibson, C.R., Obach, R.S., Shebley, M., Silva, J., Sinz, M.W., Unadkat, J.D., Zhang, L. and Zhao, P. (2014). Evaluation of various static and dynamic modeling methods to predict clinical CYP3A induction using in vitro CYP3A4 mRNA induction data. Clin. Pharmacol. Ther., 95, 179-188.   DOI
27 Fahmi, O.A., Kish, M., Boldt, S. and Obach, R.S. (2010) Cytochrome P450 3A4 mRNA is a more reliable marker than CYP3A4 activity for detecting pregnane X receptor-activated induction of drug-metabolizing enzymes. Drug Metab. Dispos., 38, 1605-1611.   DOI   ScienceOn
28 Eberl, S., Renner, B., Neubert, A., Reisig, M., Bachmakov, I., Konig, J., Dorje, F., Murdter, T.E., Ackermann, A., Dormann, H., Gassmann, K.G., Hahn, E.G., Zierhut, S., Brune, K. and Fromm, M.F. (2007) Role of p-glycoprotein inhibition for drug interactions: evidence from in vitro and pharmacoepidemiological studies. Clin. Pharmacokinet., 46, 1039-1049.   DOI   ScienceOn
29 Ye, Z.W., Camus, S., Augustijns, P. and Annaert, P. (2010) Interaction of eight HIV protease inhibitors with the canalicular efflux transporter ABCC2 (MRP2) in sandwich-cultured rat and human hepatocytes. Biopharm. Drug Dispos., 31, 178-188.
30 Shi, Q., Yang, X. and Mendrick, D.L. (2013) Hopes and challenges in using miRNAs as translational biomarkers for drug-induced liver injury. Biomarkers Med., 7, 307-315.   DOI   ScienceOn
31 Schomaker, S., Warner, R., Bock, J., Johnson, K., Potter, D., Van Winkle, J. and Aubrecht, J. (2013) Assessment of emerging biomarkers of liver injury in human subjects. Toxicol. Sci., 132, 276-283.   DOI   ScienceOn
32 Persson, M., Loye, A.F., Mow, T. and Hornberg, J.J. (2013) A high content screening assay to predict human drug-induced liver injury during drug discovery. J. Pharmacol. Toxicol. Methods, 68, 302-313.   DOI   ScienceOn
33 Pedersen, J.M., Matsson, P., Bergstrom, C.A., Hoogstraate, J., Noren, A., LeCluyse, E.L. and Artursson, P. (2013) Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol. Sci., 136, 328-343.   DOI   ScienceOn
34 Li, A.P. (2002) A review of the common properties of drugs with idiosyncratic hepatotoxicity and the "multiple determinant hypothesis" for the manifestation of idiosyncratic drug toxicity. Chem. Biol. Interact., 142, 7-23.   DOI   ScienceOn
35 Amacher, D.E. (2012) The primary role of hepatic metabolism in idiosyncratic drug-induced liver injury. Expert. Opin. Drug Metab. Toxicol., 8, 335-347.   DOI   ScienceOn
36 Ballet, F. (2010) Back to basics for idiosyncratic drug-induced liver injury: dose and metabolism make the poison. Gastroenterol. Clin. Biol., 34, 348-350.   DOI   ScienceOn
37 Boelsterli, U.A. (2003) Idiosyncratic drug hepatotoxicity revisited: new insights from mechanistic toxicology. Toxicol. Mech. Methods, 13, 3-20.   DOI
38 Claesson, A. and Spjuth, O. (2013) On mechanisms of reactive metabolite formation from drugs. Mini Rev. Med. Chem., 13, 720-729.   DOI
39 Assis, D.N. and Navarro, V.J. (2009) Human drug hepatotoxicity: a contemporary clinical perspective. Expert. Opin. Drug Metab. Toxicol., 5, 463-473.   DOI
40 Takarabe, M., Shigemizu, D., Kotera, M., Goto, S. and Kanehisa, M. (2011) Network-based analysis and characterization of adverse drug-drug interactions. J. Chem. Inf. Model., 51, 2977-2985.   DOI   ScienceOn
41 Kaplowitz, N. (2013) Avoiding idiosyncratic DILI: two is better than one. Hepatology, 58, 15-17.   DOI   ScienceOn
42 Stephens, C., Lucena, M.I. and Andrade, R.J. (2012) Genetic variations in drug-induced liver injury (DILI): resolving the puzzle. Front. Genet., 3, 253.
43 Hawkins, M.T. and Lewis, J.H. (2012) Latest advances in predicting DILI in human subjects: focus on biomarkers. Expert. Opin. Drug Metab. Toxicol., 8, 1521-1530.   DOI   ScienceOn
44 Li, A.P. (2008) Human hepatocytes as an effective alternative experimental system for the evaluation of human drug properties: general concepts and assay procedures. Altex, 25, 33-42.
45 Li, A.P. (2007) Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem. Biol. Interact., 168, 16-29.   DOI   ScienceOn
46 Gomez-Lechon, M.J., Lahoz, A., Jimenez, N., Vicente Castell, J. and Donato, M.T. (2006) Cryopreservation of rat, dog and human hepatocytes: influence of preculture and cryoprotectants on recovery, cytochrome P450 activities and induction upon thawing. Xenobiotica, 36, 457-472.   DOI   ScienceOn
47 Terry, C., Mitry, R.R., Lehec, S.C., Muiesan, P., Rela, M., Heaton, N.D., Hughes, R.D. and Dhawan, A. (2005) The effects of cryopreservation on human hepatocytes obtained from different sources of liver tissue. Cell Transplant., 14, 585-594.   DOI   ScienceOn
48 Li, A.P. and Doshi, U. (2011) Higher throughput human hepatocyte assays for the evaluation of time-dependent inhibition of CYP3A4. Drug Metab. Lett., 5, 183-191.   DOI
49 Chen, Y., Liu, L., Monshouwer, M. and Fretland, A.J. (2011) Determination of time-dependent inactivation of CYP3A4 in cryopreserved human hepatocytes and assessment of human drug-drug interactions. Drug Metab. Dispos., 39, 2085-2092.   DOI   ScienceOn
50 Xu, L., Chen, Y., Pan, Y., Skiles, G.L. and Shou, M. (2009) Prediction of human drug-drug interactions from time-dependent inactivation of CYP3A4 in primary hepatocytes using a population-based simulator. Drug Metab. Dispos., 37, 2330-2339.   DOI   ScienceOn
51 McGinnity, D.F., Berry, A.J., Kenny, J.R., Grime, K. and Riley, R.J. (2006) Evaluation of time-dependent cytochrome P450 inhibition using cultured human hepatocytes. Drug Metab. Dispos., 34, 1291-1300.   DOI   ScienceOn
52 Zhao, P., Kunze, K.L. and Lee, C.A. (2005) Evaluation of time-dependent inactivation of CYP3A in cryopreserved human hepatocytes. Drug Metab. Dispos., 33, 853-861.   DOI   ScienceOn
53 Li, A.P. (2009) Metabolism comparative cytotoxicity assay (MCCA) and cytotoxic metabolic pathway identification assay (CMPIA) with cryopreserved human hepatocytes for the evaluation of metabolism-based cytotoxicity in vitro: proofof-concept study with aflatoxin B1. Chem. Biol. Interact., 179, 4-8.   DOI   ScienceOn
54 Li, A.P., Uzgare, A. and LaForge, Y.S. (2012) Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen. Chem. Biol. Interact., 199, 1-8.   DOI   ScienceOn
55 Gomez-Lechon, M.J., Donato, M.T., Castell, J.V. and Jover, R. (2004) Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr. Drug Metab., 5, 443-462.   DOI   ScienceOn
56 Zhang, L., Zhang, Y. and Huang, S.M. (2009) Scientific and regulatory perspectives on metabolizing enzyme-transporter interplay and its role in drug interactions: challenges in predicting drug interactions. Mol. Pharmaceutics, 6, 1766-1774.   DOI   ScienceOn
57 Muller, H.J. and Gundert-Remy, U. (1994) The regulatory view on drug-drug interactions. Int. J. Clin. Pharmacol. Ther., 32, 269-273.
58 Darnell, M., Ulvestad, M., Ellis, E., Weidolf, L. and Andersson, T.B. (2012) In vitro evaluation of major in vivo drug metabolic pathways using primary human hepatocytes and HepaRG cells in suspension and a dynamic three-dimensional bioreactor system. J. Pharmacol. Exp. Ther., 343, 134-144.   DOI
59 Hong, H., Su, H., Ma, L., Yao, M., Iyer, R.A., Humphreys, W.G. and Christopher, L.J. (2011) In vitro characterization of the metabolic pathways and cytochrome P450 inhibition and induction potential of BMS-690514, an ErbB/vascular endothelial growth factor receptor inhibitor. Drug Metab. Dispos., 39, 1658-1667.   DOI   ScienceOn
60 Khojasteh, S.C., Prabhu, S., Kenny, J.R., Halladay, J.S. and Lu, A.Y. (2011) Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re-evaluation of P450 isoform selectivity. Eur. J. Drug Metab. Pharmacokinet., 36, 1-16.   DOI   ScienceOn
61 Parkinson, A., Kazmi, F., Buckley, D.B., Yerino, P., Ogilvie, B.W. and Paris, B.L. (2010) System-dependent outcomes during the evaluation of drug candidates as inhibitors of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) enzymes: human hepatocytes versus liver microsomes versus recombinant enzymes. Drug Metab. Pharmacokinet., 25, 16-27.   DOI   ScienceOn
62 Lee, J.K., Marion, T.L., Abe, K., Lim, C., Pollock, G.M. and Brouwer, K.L. (2010) Hepatobiliary disposition of troglitazone and metabolites in rat and human sandwich-cultured hepatocytes: use of Monte Carlo simulations to assess the impact of changes in biliary excretion on troglitazone sulfate accumulation. J. Pharmacol. Exp. Ther., 332, 26-34.   DOI   ScienceOn
63 Keppler, D. (2005) Uptake and efflux transporters for conjugates in human hepatocytes. Methods Enzymol., 400, 531-542.   DOI   ScienceOn
64 Matsunaga, N., Nunoya, K., Okada, M., Ogawa, M. and Tamai, I. (2013) Evaluation of hepatic disposition of paroxetine using sandwich-cultured rat and human hepatocytes. Drug Metab. Dispos., 41, 735-743.   DOI   ScienceOn
65 Marion, T.L., Perry, C.H., St Claire, R.L., 3rd and Brouwer, K.L. (2012) Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes. Toxicol. Appl. Pharmacol., 261, 1-9.   DOI   ScienceOn
66 Wolf, K.K., Vora, S., Webster, L.O., Generaux, G.T., Polli, J.W. and Brouwer, K.L. (2010) Use of cassette dosing in sandwich-cultured rat and human hepatocytes to identify drugs that inhibit bile acid transport. Toxicol. In Vitro, 24, 297-309.   DOI   ScienceOn
67 Li, N., Bi, Y.A., Duignan, D.B. and Lai, Y. (2009) Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes. Mol. Pharmaceutics, 6, 1180-1189.   DOI   ScienceOn
68 Reyner, E.L., Sevidal, S., West, M.A., Clouser-Roche, A., Freiwald, S., Fenner, K., Ullah, M., Lee, C.A. and Smith, B.J. (2013) In vitro characterization of axitinib interactions with human efflux and hepatic uptake transporters: implications for disposition and drug interactions. Drug Metab. Dispos., 41, 1575-1583.   DOI   ScienceOn
69 Warner, D.J., Chen, H., Cantin, L.D., Kenna, J.G., Stahl, S., Walker, C.L. and Noeske, T. (2012) Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification. Drug Metab. Dispos., 40, 2332-2341.   DOI   ScienceOn
70 Saab, L., Peluso, J., Muller, C.D. and Ubeaud-Sequier, G. (2013) Implication of hepatic transporters (MDR1 and MRP2) in inflammation-associated idiosyncratic drug-induced hepatotoxicity investigated by microvolume cytometry. Cytometry A, 83, 403-408.
71 Kubitz, R., Droge, C., Stindt, J., Weissenberger, K. and Haussinger, D. (2012) The bile salt export pump (BSEP) in health and disease. Clin. Res. Hepatol. Gastroenterol., 36, 536-553.   DOI   ScienceOn
72 Moeller, T.A., Shukla, S.J. and Xia, M. (2012) Assessment of compound hepatotoxicity using human plateable cryopreserved hepatocytes in a 1536-well-plate format. Assay Drug Dev. Technol., 10, 78-87.   DOI   ScienceOn
73 Ning, B., Bai, M. and Shen, W. (2011) Reduced glutathione protects human hepatocytes from palmitate-mediated injury by suppressing endoplasmic reticulum stress response. Hepatogastroenterology, 58, 1670-1679.
74 O'Brien, P.J., Chan, K. and Silber, P.M. (2004) Human and animal hepatocytes in vitro with extrapolation in vivo. Chem. Biol. Interact., 150, 97-114.   DOI   ScienceOn
75 Dvorak, Z., Kosina, P., Walterova, D., Simanek, V., Bachleda, P. and Ulrichova, J. (2003) Primary cultures of human hepatocytes as a tool in cytotoxicity studies: cell protection against model toxins by flavonolignans obtained from Silybum marianum. Toxicol. Lett., 137, 201-212.   DOI   ScienceOn
76 Dybing, E. and Mitchell, J.R. (1977) The role of metabolic activation for drug-induced liver injuries. Acta Pharmacol. Toxicol. (Copenhagen), 41 Suppl 2, 263-272.
77 Kienhuis, A.S., van de Poll, M.C., Dejong, C.H., Gottschalk, R., van Herwijnen, M., Boorsma, A., Kleinjans, J.C., Stierum, R.H. and van Delft, J.H. (2009) A toxicogenomicsbased parallelogram approach to evaluate the relevance of coumarin-induced responses in primary human hepatocytes in vitro for humans in vivo. Toxicol. In Vitro, 23, 1163-1169.   DOI   ScienceOn
78 Kier, L.D., Neft, R., Tang, L., Suizu, R., Cook, T., Onsurez, K., Tiegler, K., Sakai, Y., Ortiz, M., Nolan, T., Sankar, U. and Li, A.P. (2004) Applications of microarrays with toxicologically relevant genes (tox genes) for the evaluation of chemical toxicants in Sprague Dawley rats in vivo and human hepatocytes in vitro. Mutat. Res., 549, 101-113.   DOI   ScienceOn
79 Zhang, J.D., Berntenis, N., Roth, A. and Ebeling, M. (2014) Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity. Pharmacogenomics J., 14, 208-216.   DOI   ScienceOn
80 Mitchell, J.R., Nelson, S.D., Thorgeirsson, S.S., McMurtry, R.J. and Dybing, E. (1976) Metabolic activation: biochemical basis for many drug-induced liver injuries. Prog. Liver Dis., 5, 259-279.
81 Wood, A.W., Levin, W., Lu, A.Y., Yagi, H., Hernandez, O., Jerina, D.M. and Conney, A.H. (1976) Metabolism of benzo(a)pyrene and benzo (a)pyrene derivatives to mutagenic products by highly purified hepatic microsomal enzymes. J. Biol. Chem., 251, 4882-4890.
82 Guengerich, F.P., Johnson, W.W., Shimada, T., Ueng, Y.F., Yamazaki, H. and Langouet, S. (1998) Activation and detoxication of aflatoxin B1. Mutat. Res., 402, 121-128.   DOI   ScienceOn
83 Daniels, J.S., Lai, Y., South, S., Chiang, P.C., Walker, D., Feng, B., Mireles, R., Whiteley, L.O., McKenzie, J.W., Stevens, J., Mourey, R., Anderson, D. and Davis li, J.W. (2013) Inhibition of Hepatobiliary Transporters by A Novel Kinase Inhibitor Contributes to Hepatotoxicity in Beagle Dogs. Drug Metab. Lett., 7, 15-22.   DOI
84 Li, A.P. (2007) Human-based in vitro experimental systems for the evaluation of human drug safety. Curr. Drug Saf., 2, 193-199.   DOI
85 Li, A.P. (2008) In vitro evaluation of human xenobiotic toxicity: scientific concepts and the novel integrated discrete multiple cell co-culture (IdMOC) technology. Altex, 25, 43-49.
86 Li, A.P., Bode, C. and Sakai, Y. (2004) A novel in vitro system, the integrated discrete multiple organ cell culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma breast cancer cells. Chem. Biol. Interact., 150, 129-136.   DOI   ScienceOn
87 Amacher, D.E. (2010) The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity. Toxicol. Appl. Pharmacol., 245, 134-142.   DOI   ScienceOn
88 Beger, R.D., Sun, J. and Schnackenberg, L.K. (2010) Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol 243, 154-166.   DOI   ScienceOn
89 Li, A.P., Kaminski, D.L. and Rasmussen, A. (1995) Substrates of human hepatic cytochrome P450 3A4. Toxicology, 104, 1-8.   DOI   ScienceOn
90 Webb, D.J., Freestone, S., Allen, M.J. and Muirhead, G.J. (1999) Sildenafil citrate and blood-pressure-lowering drugs: results of drug interaction studies with an organic nitrate and a calcium antagonist. Am. J. Cardiol., 83, 21C-28C.
91 Zimmermann, M., Duruz, H., Guinand, O., Broccard, O., Levy, P., Lacatis, D. and Bloch, A. (1992) Torsades de Pointes after treatment with terfenadine and ketoconazole. Eur. Heart J., 13, 1002-1003.   DOI
92 Flockhart, D.A. (1996) Drug interactions, cardiac toxicity, and terfenadine: from bench to clinic? J. Clin. Psychopharmacol., 16, 101-103.   DOI   ScienceOn
93 Ishizaki, T. (1996) Strategic proposals to avoid drug interactions during drug development: a lesson from a terfenadine-related drug interaction. J. Toxicol. Sci., 21, 301-303.   DOI   ScienceOn
94 Terrien, M.H., Rahm, F., Fellrath, J.M. and Spertini, F. (1999) Comparison of the effects of terfenadine with fexofenadine on nasal provocation tests with allergen. J. Allergy Clin. Immunol., 103, 1025-1030.   DOI   ScienceOn
95 Borcherding, S.M., Baciewicz, A.M. and Self, T.H. (1992) Update on rifampin drug interactions. II. Arch. Intern. Med., 152, 711-716.   DOI   ScienceOn
96 Holdiness, M.R. (1987) Rifampin drug interactions. Arch. Intern. Med., 147, 1856.   DOI   ScienceOn
97 Baciewicz, A.M., Self, T.H. and Bekemeyer, W.B. (1987) Update on rifampin drug interactions. Arch. Intern. Med., 147, 565-568.   DOI   ScienceOn
98 Baciewicz, A.M. and Self, T.H. (1984) Rifampin drug interactions. Arch. Intern. Med., 144, 1667-1671.   DOI   ScienceOn
99 Li, A.P. (2009) Evaluation of luciferin-isopropyl acetal as a CYP3A4 substrate for human hepatocytes: effects of organic solvents, cytochrome P450 (P450) inhibitors, and P450 inducers. Drug Metab. Dispos., 37, 1598-1603.   DOI   ScienceOn
100 Doshi, U. and Li, A.P. (2011) Luciferin IPA-based higher throughput human hepatocyte screening assays for CYP3A4 inhibition and induction. J. Biomol. Screening, 16, 903-909.   DOI   ScienceOn
101 Li, A.P., Maurel, P., Gomez-Lechon, M.J., Cheng, L.C. and Jurima-Romet, M. (1997) Preclinical evaluation of drug-drug interaction potential: present status of the application of primary human hepatocytes in the evaluation of cytochrome P450 induction. Chem. Biol. Interact., 107, 5-16.   DOI   ScienceOn
102 Pelletier, R.D., Lai, W.G. and Wong, Y.N. (2013) Application of a substrate cocktail approach in the assessment of cytochrome P450 induction using cultured human hepatocytes. J. Biomol. Screening, 18, 199-210.   DOI   ScienceOn
103 Feidt, D.M., Klein, K., Hofmann, U., Riedmaier, S., Knobeloch, D., Thasler, W.E., Weiss, T.S., Schwab, M. and Zanger, U.M. (2010) Profiling induction of cytochrome p450 enzyme activity by statins using a new liquid chromatography-tandem mass spectrometry cocktail assay in human hepatocytes. Drug Metab. Dispos., 38, 1589-1597.   DOI   ScienceOn
104 Lahoz, A., Donato, M.T., Picazo, L., Castell, J.V. and Gomez-Lechon, M.J. (2008) Assessment of cytochrome P450 induction in human hepatocytes using the cocktail strategy plus liquid chromatography tandem mass spectrometry. Drug Metab. Lett., 2, 205-209.   DOI
105 Gerin, B., Dell'Aiera, S., Richert, L., Smith, S. and Chanteux, H. (2013) Assessment of cytochrome P450 (1A2, 2B6, 2C9 and 3A4) induction in cryopreserved human hepatocytes cultured in 48-well plates using the cocktail strategy. Xenobiotica, 43, 320-335.   DOI   ScienceOn
106 Kindla, J., Fromm, M.F. and Konig, J. (2009) In vitro evidence for the role of OATP and OCT uptake transporters in drug-drug interactions. Expert Opin. Drug Metab. Toxicol., 5, 489-500.   DOI
107 Barton, H.A., Lai, Y., Goosen, T.C., Jones, H.M., El-Kattan, A.F., Gosset, J.R., Lin, J. and Varma, M.V. (2013) Modelbased approaches to predict drug-drug interactions associated with hepatic uptake transporters: preclinical, clinical and beyond. Expert. Opin. Drug Metab. Toxicol., 9, 459-472.   DOI   ScienceOn
108 Takanohashi, T., Kubo, S., Arisaka, H., Shinkai, K. and Ubukata, K. (2012) Contribution of organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 to hepatic uptake of nateglinide, and the prediction of drug-drug interactions via these transporters. J. Pharm. Pharmacol., 64, 199-206.   DOI
109 Fahrmayr, C., Fromm, M.F. and Konig, J. (2010) Hepatic OATP and OCT uptake transporters: their role for drug-drug interactions and pharmacogenetic aspects. Drug Metab. Rev., 42, 380-401.   DOI   ScienceOn
110 Soars, M.G., Webborn, P.J. and Riley, R.J. (2009) Impact of hepatic uptake transporters on pharmacokinetics and drug-drug interactions: use of assays and models for decision making in the pharmaceutical industry. Mol. Pharmaceutics, 6, 1662-1677.   DOI   ScienceOn
111 Regev, A. (2013) How to avoid being surprised by hepatotoxicity at the final stages of drug development and approval. Clin. Liver Dis., 17, 749-767.   DOI
112 Giordano, C.M. and Zervos, X.B. (2013) Clinical manifestations and treatment of drug-induced hepatotoxicity. Clin. Liver Dis., 17, 565-573.   DOI
113 Hussaini, S.H. and Farrington, E.A. (2014) Idiosyncratic drug-induced liver injury: an update on the 2007 overview. Expert. Opin. Drug Saf., 13, 67-81.   DOI   ScienceOn
114 Abraham, V.C., Towne, D.L., Waring, J.F., Warrior, U. and Burns, D.J. (2008) Application of a high-content multiparameter cytotoxicity assay to prioritize compounds based on toxicity potential in humans. J. Biomol. Screening, 13, 527-537.   DOI
115 Prabhu, S., Fackett, A., Lloyd, S., McClellan, H.A., Terrell, C.M., Silber, P.M. and Li, A.P. (2002) Identification of glutathione conjugates of troglitazone in human hepatocytes. Chem. Biol. Interact., 142, 83-97.   DOI   ScienceOn
116 Lloyd, S., Hayden, M.J., Sakai, Y., Fackett, A., Silber, P.M., Hewitt, N.J. and Li, A.P. (2002) Differential in vitro hepatotoxicity of troglitazone and rosiglitazone among cryopreserved human hepatocytes from 37 donors. Chem. Biol. Interact., 142, 57-71.   DOI   ScienceOn
117 Li, A.P., Lu, C., Brent, J.A., Pham, C., Fackett, A., Ruegg, C.E. and Silber, P.M. (1999) Cryopreserved human hepatocytes: characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chem. Biol. Interact., 121, 17-35.   DOI   ScienceOn
118 O'Brien, P.J., Irwin, W., Diaz, D., Howard-Cofield, E., Krejsa, C.M., Slaughter, M.R., Gao, B., Kaludercic, N., Angeline, A., Bernardi, P., Brain, P. and Hougham, C. (2006) High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch. Toxicol., 80, 580-604.   DOI
119 Monteith, D.K. and Theiss, J.C. (1996) Comparison of tacrine-induced cytotoxicity in primary cultures of rat, mouse, monkey, dog, rabbit, and human hepatocytes. Drug Chem. Toxicol., 19, 59-70.   DOI
120 Zhao, L. and Pickering, G. (2011) Paracetamol metabolism and related genetic differences. Drug Metab. Rev., 43, 41-52.   DOI   ScienceOn
121 Veronese, M.E. and McLean, S. (1991) Metabolism of paracetamol and phenacetin in relation to debrisoquine oxidation phenotype. Eur. J. Clin. Pharmacol., 40, 547-552.
122 Chang, T.K., Yu, L., Maurel, P. and Waxman, D.J. (1997) Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res., 57, 1946-1954.
123 Alley, M.C., Powis, G., Appel, P.L., Kooistra, K.L. and Lieber, M.M. (1984) Activation and inactivation of cancer chemotherapeutic agents by rat hepatocytes cocultured with human tumor cell lines. Cancer Res., 44, 549-556.
124 Corcoran, J., Lange, A., Winter, M.J. and Tyler, C.R. (2012) Effects of pharmaceuticals on the expression of genes involved in detoxification in a carp primary hepatocyte model. Environ. Sci. Technol., 46, 6306-6314.   DOI   ScienceOn
125 Gonzalez, R., Cruz, A., Ferrin, G., Lopez-Cillero, P., Briceno, J., Gomez, M.A., Rufian, S., Padillo, J., De la Mata, M., Marin, J.J. and Muntane, J. (2011) Cytoprotective properties of rifampicin are related to the regulation of detoxification system and bile acid transporter expression during hepatocellular injury induced by hydrophobic bile acids. J. Hepatobiliary Pancreat. Sci., 18, 740-750.   DOI
126 Richter, P.A., Li, A.P., Polzin, G. and Roy, S.K. (2010) Cytotoxicity of eight cigarette smoke condensates in three test systems: comparisons between assays and condensates. Regul. Toxicol. Pharmacol., 58, 428-436.   DOI   ScienceOn
127 Li, A.P. (2009) The use of the Integrated Discrete Multiple Organ Co-culture (IdMOC) system for the evaluation of multiple organ toxicity. Altern. Lab. Anim., 37, 377-385.