• Title/Summary/Keyword: metabolite analysis

Search Result 447, Processing Time 0.03 seconds

NMR Metabolomic Profiles for Quality Control of Korean Green Tea (Camellia sinensis) Classified by the Plucking Season

  • Choi, Kwang-Ho;Park, Ji Su;Kim, Hyeon Su;Choi, Ye Hun;Jeon, Jun Hyeok;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.119-125
    • /
    • 2017
  • The plucking season of green tea leaves is one of the important parameters that decide their metabolic diversity, quality, and prices. The effects of plucking sghlwleasons on green tea metabolites were investigated through metabolite profiling by $^1H$ NMR spectroscopy. The orthogonal projection on latent structure-discriminant analysis (OPLS-DA) showed clear discriminations of green teas by three different grades depending on plucking seasons: Ujeon, Sejak, and Jungjak. These results suggested that the nine peak groups could be used for diagnostics for identification of high quality Ujeon grade of green tea.

Mass Spectrometry for Metabolome Analysis

  • Wang, Xiaohang;Li, Liang
    • Mass Spectrometry Letters
    • /
    • v.11 no.2
    • /
    • pp.17-24
    • /
    • 2020
  • Metabolomics has become an important research field with many areas of applications ranging from disease biomarker discovery to global biology systems study. A key step in metabolomics is to perform metabolome analysis to obtain quantitative information on metabolic changes among comparative samples. Mass spectrometry (MS) is widely used for highly sensitive detection of many different types of metabolites. In this review, we highlight some of the more commonly used MS techniques for metabolome analysis.

Evaluations of Inhomogeneous Shimming in $^1$H MR Spectroscopy (자기공명분광에서 비균질 자장보정에 관한 평가)

  • Choe, Bo-Young;Baik, Hyeon-Man;Suh, Tae-Suk;Lee, Hyoung-Koo;Chun, Heung-Jae;Shim, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.73-83
    • /
    • 2000
  • In this study, we investigate the effects of poor shimming on quantitative measurement of ratios of metabolite levels by proton magnetic resonance spectroscopy ($^1$H MRS). Coefficient of variation (COV) of metabolite ratios for point resolved spectroscopy (PRESS) and stimulated-echo acquisition mode (STEAM) spectra was evaluated from a phantom containing in vivo levels of metabolites using a conventional whole body 1.5T MR system and conventional acquisition and analysis protocol. A statistical P-value was also calculated from a linear regression for relationship of metabolite ratios. N-acetylaspartate (NAA)/ creatine (Cr) and NAA/ choline (Cho) had low COV values for the long and short TE spectra (29.1 and 27.5%; 23.8 and 12.6 %), whereas Cho/Cr and Cr/Cho had high COV values (50.0 and 68.6 %; 27.5 and 29.3 %). A linear relationship between NAA/Cr and Cho/Cr, and between NAA/Cho and Cr/Cho revealed the statistical significance in the long and short TE spectra, respectively (P < 0.0001 and P < 0.0001; P = 0.015 and P = 0.005). There was no significant relationship between Cho/NAA and Cr/NAA in the measurement (P = 0.159; P = 0.910). The present study suggested that NAA/Cr and NAA/Cho could be useful for data with poor shimming in $^1$H MR spectroscopy. In conclusion, statistical significance of metabolite ratios indicated that the Cr and Cho levels could be interpreted as a significant alteration factor in the long and short TE spectra, and then should be used with care to provide precise metabolite quantification.

  • PDF

Effects of Short Microwave Irradiation Time at the Seedlings Stage on the Growth and Secondary Metabolite Contents of Lettuce (Lactuca sativa L.) (유묘단계에서 단시간 마이크로웨이브 처리가 상추의 생육 및 이차대사산물 함량에 미치는 영향)

  • Yong Jae Lee;Su Yong Park;Ju Hyung Shin;Seung Yong Hahm;Gwang Ya Lee;Jong Seok Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.217-225
    • /
    • 2023
  • This experiment was conducted to investigate the effects of microwave irradiation on the growth and secondary metabolite contents of lettuce seedlings. Seedlings at three weeks after sowing were treated by a microwave oven for 0, 4, 8, and 12 seconds with 200 W. After cultivation in a close plant production system for 4 weeks, plant growth measurements and secondary metabolite analysis were performed. The results showed that the fresh and dry weights of the shoot and root, leaf area, leaf length, and the number of leaves were decreased as increasing the microwave treatment times. Chlorophyll a and b, total carotenoids were increased and total phenolics were decreased at the 12-second treatment compared to the 4-second treatment. Total flavonoid contents were decreased at the 8-second treatment compared to the control. These results suggest that the changes in the levels of secondary metabolites were caused by oxidative stress. Although there was no significant difference in secondary metabolite contents excluding total flavonoid contents on the microwave treatments compared to the control, the significant difference suggests that the microwave treatment of 200 W and 2.45 GHz may alter secondary metabolite contents of lettuce after 4 weeks.

Identification of the Phenalamide Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675

  • Park, Suhyun;Hyun, Hyesook;Lee, Jong Suk;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1636-1642
    • /
    • 2016
  • Phenalamide is a bioactive secondary metabolite produced by Myxococcus stipitatus. We identified a 56 kb phenalamide biosynthetic gene cluster from M. stipitatus DSM 14675 by genomic sequence analysis and mutational analysis. The cluster is comprised of 12 genes (MYSTI_04318- MYSTI_04329) encoding three pyruvate dehydrogenase subunits, eight polyketide synthase modules, a non-ribosomal peptide synthase module, a hypothetical protein, and a putative flavin adenine dinucleotide-binding protein. Disruption of the MYSTI_04324 or MYSTI_04325 genes by plasmid insertion resulted in a defect in phenalamide production. The organization of the phenalamide biosynthetic modules encoded by the fifth to tenth genes (MYSTI_04320-MYSTI_04325) was very similar to that of the myxalamid biosynthetic gene cluster from Stigmatella aurantiaca Sg a15, as expected from similar backbone structures of the two substances. However, the loading module and the first extension module of the phenalamide synthase encoded by the first to fourth genes (MYSTI_04326-MYSTI_04329) were found only in the phenalamide biosynthetic gene cluster from M. stipitatus DSM 14675.

Production of Citrate by Anaerobic Fungi in the Presence of Co-culture Methanogens as Revealed by 1H NMR Spectrometry

  • Cheng, Yan Fen;Jin, Wei;Mao, Sheng Yong;Zhu, Wei-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1416-1423
    • /
    • 2013
  • The metabolomic profile of the anaerobic fungus Piromyces sp. F1, isolated from the rumen of goats, and how this is affected by the presence of naturally associated methanogens, was analyzed by nuclear magnetic resonance spectroscopy. The major metabolites in the fungal monoculture were formate, lactate, ethanol, acetate, succinate, sugars/amino acids and ${\alpha}$-ketoglutarate, whereas the co-cultures of anaerobic fungi and associated methanogens produced citrate. This is the first report of citrate as a major metabolite of anaerobic fungi. Univariate analysis showed that the mean values of formate, lactate, ethanol, citrate, succinate and acetate in co-cultures were significantly higher than those in the fungal monoculture, while the mean values of glucose and ${\alpha}$-ketoglutarate were significantly reduced in co-cultures. Unsupervised principal components analysis revealed separation of metabolite profiles of the fungal mono-culture and co-cultures. In conclusion, the novel finding of citrate as one of the major metabolites of anaerobic fungi associated with methanogens may suggest a new yet to be identified pathway exists in co-culture. Anaerobic fungal metabolism was shifted by associated methanogens, indicating that anaerobic fungi are important providers of substrates for methanogens in the rumen and thus play a key role in ruminal methanogenesis.

Comparative Genomics Uncovers the Genetic Diversity and Synthetic Biology of Secondary Metabolite Production of Trametes

  • Zhang, Yan;Wang, Jingjing;Yajun, Chen;Zhou, Minghui;Wang, Wei;Geng, Ming;Xu, Decong;Xu, Zhongdong
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.104-114
    • /
    • 2020
  • The carbohydrate-active enzyme (CAZyme) genes of Trametes contribute to polysaccharide degradation. However, the comprehensive analysis of the composition of CAZymes and the biosynthetic gene clusters (BGCs) of Trametes remain unclear. Here, we conducted comparative analysis, detected the CAZyme genes, and predicted the BGCs for nine Trametes strains. Among the 82,053 homologous clusters obtained for Trametes, we identified 8518 core genes, 60,441 accessory genes, and 13,094 specific genes. A large proportion of CAZyme genes were cataloged into glycoside hydrolases, glycosyltransferases, and carbohydrate esterases. The predicted BGCs of Trametes were divided into six strategies, and the nine Trametes strains harbored 47.78 BGCs on average. Our study revealed that Trametes exhibits an open pan-genome structure. These findings provide insights into the genetic diversity and explored the synthetic biology of secondary metabolite production for Trametes.

Metabolomics-Based Chemotaxonomic Classification of Streptomyces spp. and Its Correlation with Antibacterial Activity

  • Lee, Mee Youn;Kim, Hyang Yeon;Lee, Sarah;Kim, Jeong-Gu;Suh, Joo-Won;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1265-1274
    • /
    • 2015
  • Secondary metabolite-based chemotaxonomic classification of Streptomyces (8 species, 14 strains) was performed using ultraperformance liquid chromatography-quadrupole-time-offlight-mass spectrometry with multivariate statistical analysis. Most strains were generally well separated by grouping under each species. In particular, S. rimosus was discriminated from the remaining sevens pecies (S. coelicolor, S. griseus, S. indigoferus, S. peucetius, S. rubrolavendulae, S. scabiei, and S. virginiae) in partial least squares discriminant analysis, and oxytetracycline and rimocidin were identified as S. rimosus-specific metabolites. S. rimosus also showed high antibacterial activity against Xanthomonas oryzae pv. oryzae, the pathogen responsible for rice bacterial blight. This study demonstrated that metabolite-based chemotaxonomic classification is an effective tool for distinguishing Streptomyces spp. and for determining their species-specific metabolites.

Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean

  • Kim, Da-Ran;Kim, Su-Hyeon;Lee, Su In;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.372-382
    • /
    • 2022
  • Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.