Browse > Article
http://dx.doi.org/10.5478/MSL.2020.11.2.17

Mass Spectrometry for Metabolome Analysis  

Wang, Xiaohang (Department of Chemistry, University of Alberta)
Li, Liang (Department of Chemistry, University of Alberta)
Publication Information
Mass Spectrometry Letters / v.11, no.2, 2020 , pp. 17-24 More about this Journal
Abstract
Metabolomics has become an important research field with many areas of applications ranging from disease biomarker discovery to global biology systems study. A key step in metabolomics is to perform metabolome analysis to obtain quantitative information on metabolic changes among comparative samples. Mass spectrometry (MS) is widely used for highly sensitive detection of many different types of metabolites. In this review, we highlight some of the more commonly used MS techniques for metabolome analysis.
Keywords
Metabolite; metabolome; metabolomics; mass spectrometry; targeted analysis; untargeted analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fiehn, O., Metabolomics-the link between genotypes and phenotypes. In Functional Genomics, Springer: Dordrecht, 2002, 155.
2 Martin, J. A.; Wang, Z. Nat. Rev. Genet. 2011, 12, 671.   DOI
3 Schwanhausser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Nature 2011, 473, 337.   DOI
4 Vitzthum, F.; Behrens, F.; Anderson, N. L.; Shaw, J. H. J. Proteome Res. 2005, 4, 1086.   DOI
5 Dettmer, K.; Hammock, B. D. Environ. Health Persp. 2004, 112, A396.   DOI
6 Garcia-Sevillano, M. A.; Garcia-Barrera, T.; Abril, N.; Pueyo, C.; Lopez-Barea, J.; Gomez-Ariza, J. L. J. Proteomics 2014, 104, 4.   DOI
7 Hasin, Y.; Seldin, M.; Lusis, A. Genome Biol. 2017, 18, 83.   DOI
8 Oresic, M. Nutr. Metab. Cardiovas. Dis. 2009, 19, 816.   DOI
9 Lockhart, D. J.; Winzeler, E. A. Nature 2000, 405, 827.   DOI
10 Turi, K. N.; Romick-Rosendale, L.; Ryckman, K. K.; Hartert, T. V. J. Allergy Clin. Immunol. 2018, 141, 1191.   DOI
11 Barba, I.; Fernandez?Montesinos, R.; Garcia?Dorado, D.; Pozo, D. J. Cell. Mol. Med. 2008, 12, 1477.   DOI
12 Bothwell, J. H.; Griffin, J. L. Biol. Rev. 2011, 86, 493.   DOI
13 Winning, H.; Roldan-Marin, E.; Dragsted, L. O.; Viereck, N.; Poulsen, M.; Sanchez-Moreno, C.; Cano, M. P.; Engelsen, S. B. Analyst 2009, 134, 2344.   DOI
14 Jung, J. Y.; Lee, H.-S.; Kang, D.-G.; Kim, N. S.; Cha, M. H.; Bang, O.-S.; Hwang, G.-S. Stroke 2011, 42, 1282   DOI
15 Graham, S. F.; Holscher, C.; Green, B. D. Metabolomics 2014, 10, 744.   DOI
16 Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spectrom. Rev. 2007, 26, 51.   DOI
17 Scholz, M.; Gatzek, S.; Sterling, A.; Fiehn, O.; Selbig, J. Bioinformatics 2004, 20, 2447.   DOI
18 Kirwan, J. A.; Weber, R. J.; Broadhurst, D. I.; Viant, M. R. Sci. Data 2014, 1, 140012.   DOI
19 Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Analyst 2012, 137, 293.   DOI
20 Want, E. J.; Masson, P.; Michopoulos, F.; Wilson, I. D.; Theodoridis, G.; Plumb, R. S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J. K. Nat. Protoc. 2013, 8, 17.   DOI
21 Chan, E. C. Y.; Pasikanti, K. K.; Nicholson, J. K. Nat. Protoc. 2011, 6, 1483.   DOI
22 Ramautar, R.; Somsen, G. W.; de Jong, G. J. Electrophoresis 2019, 40, 165.   DOI
23 Zhang, X.; Quinn, K.; Cruickshank-Quinn, C.; Reisdorph, R.; Reisdorph, N. Curr. Opin. Chem. Biol. 2018, 42, 60.   DOI
24 Guo, K.; Li, L. Anal. Chem. 2009, 81, 3919.   DOI
25 El-Aneed, A.; Cohen, A.; Banoub, J. Appl. Spectrosc. Rev. 2009, 44, 210.   DOI
26 Deng, C.; Zhang, X.; Li, N. J. Chromatogr. B 2004, 808, 269.   DOI
27 Dunn, W. B.; Ellis, D. I. TrAC-Trends Anal. Chem. 2005, 24, 285.   DOI
28 Soga, T.; Ohashi, Y.; Ueno, Y.; Naraoka, H.; Tomita, M.; Nishioka, T. J. Proteome Res. 2003, 2, 488.   DOI
29 Fernandez-Maestre, R. Revista UDCA Actualidad & Divulgacion Cientifica 2012, 15, 467.
30 Ohashi, H.; Hasegawa, M.; Wakimoto, K.; Miyamoto-Sato, E., Next-generation technologies for multiomics approaches including interactome sequencing. Biomed Res. Int. 2015, 2015, 104209.   DOI
31 Nicholson, J. K.; Connelly, J.; Lindon, J. C.; Holmes, E. Nat. Rev. Drug Discov. 2002, 1, 153.   DOI
32 Patti, G. J.; Yanes, O.; Siuzdak, G. Nat. Rev. Mol. Cell Biol. 2012, 13, 263.   DOI
33 Styczynski, M. P.; Moxley, J. F.; Tong, L. V.; Walther, J. L.; Jensen, K. L.; Stephanopoulos, G. N. Anal. Chem. 2007, 79, 966.   DOI
34 Alonso, A.; Marsal, S.; Julia, A. Front. Bioeng. Biotechnol. 2015, 3, 23.   DOI
35 Gonzalez-Dominguez, R.; Garcia-Barrera, T.; Vitorica, J.; Gomez-Ariza, J. L. Biochim. Biophys. Acta, Mol. Basis Dis. 2014, 1842, 2395.   DOI
36 Nishiumi, S.; Kobayashi, T.; Ikeda, A.; Yoshie, T.; Kibi, M.; Izumi, Y.; Okuno, T.; Hayashi, N.; Kawano, S.; Takenawa, T. PLoS One 2012, 7, e40459.   DOI
37 Zhang, L.; Li, L.; Kong, H.; Zeng, F. J. South. Med. Univ. 2015, 35, 763.
38 Hounoum, B. M.; Blasco, H.; Emond, P.; Mavel, S. TrACTrends Anal. Chem. 2016, 75, 118.   DOI
39 Lin, C. Y.; Wu, H.; Tjeerdema, R. S.; Viant, M. R. Metabolomics 2007, 3, 55.   DOI
40 Levy, A. J.; Oranzi, N. R.; Ahmadireskety, A.; Kemperman, R. H.; Wei, M. S.; Yost, R. A. TrAC- Trends Anal. Chem. 2019, 116, 274.   DOI
41 Viant, M. R.; Rosenblum, E. S.; Tjeerdema, R. S. Environ. Sci. Technol. 2003, 37, 4982.   DOI
42 Wishart, D. S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A. C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S. Nucleic Acids Res. 2007, 35, D521.   DOI
43 Waters, N. J.; Holmes, E.; Waterfield, C. J.; Farrant, R. D.; Nicholson, J. K. Biochem. Pharmacol. 2002, 64, 67.   DOI
44 Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G. Anal. Chem. 2006, 78, 779.   DOI
45 Smith, C. A.; O'Maille, G.; Want, E. J.; Qin, C.; Trauger, S. A.; Brandon, T. R.; Custodio, D. E.; Abagyan, R.; Siuzdak, G. Ther. Drug Monit. 2005, 27, 747.   DOI
46 Xia, J.; Psychogios, N.; Young, N.; Wishart, D. S. Nucleic Acids Res. 2009, 37, W652.   DOI
47 Siskos, A. P.; Jain, P.; Romisch-Margl, W.; Bennett, M.; Achaintre, D.; Asad, Y.; Marney, L.; Richardson, L.; Koulman, A.; Griffin, J. L. Anal. Chem. 2016, 89, 656.   DOI
48 Soumeh, E. A.; Hedemann, M. S.; Poulsen, H. D.; Corrent, E.; van Milgen, J.; Norgaard, J. V. J. Proteome Res. 2016, 15, 4195.   DOI
49 Ebshiana, A. A.; Snowden, S. G.; Legido-Quigley, C. Preprints 2017, 2017040080.
50 Mir, S. A.; Rajagopalan, P.; Jain, A. P.; Khan, A. A.; Datta, K. K.; Mohan, S. V.; Lateef, S. S.; Sahasrabuddhe, N.; Somani, B.; Prasad, T. K. J. Proteomics 2015, 127, 96.   DOI
51 Sillner, N.; Walker, A.; Harrieder, E.-M.; Schmitt-Kopplin, P.; Witting, M. J. Chromatogr. B 2019, 1109, 142.   DOI
52 Ortmayr, K.; Causon, T. J.; Hann, S.; Koellensperger, G. TrAC-Trends Anal. Chem. 2016, 82, 358.   DOI
53 Huang, S.-M.; Xu, F.; Lam, S. H.; Gong, Z.; Ong, C. N. Mol. Biosyst. 2013, 9, 1372.   DOI
54 Yanes, O.; Tautenhahn, R.; Patti, G. J.; Siuzdak, G. Anal. Chem. 2011, 83, 2152.   DOI
55 Papadimitropoulos, M.-E. P.; Vasilopoulou, C. G.; Maga-Nteve, C.; Klapa, M. I., Untargeted GC-MS Metabolomics. In Metabolic Profiling, Humana Press: New York, 2018, 133.
56 Ibanez, C.; Simo, C.; Garcia?Canas, V.; Gomez?Martinez, A.; Ferragut, J. A.; Cifuentes, A. Electrophoresis 2012, 33, 2328.   DOI
57 Mairinger, T.; Causon, T. J.; Hann, S. Curr. Opin. Chem. Biol. 2018, 42, 9.   DOI
58 Sana, T. R.; Waddell, K.; Fischer, S. M. J. Chromatogr. B 2008, 871, 314.   DOI
59 Yang, Y.; Cruickshank, C.; Armstrong, M.; Mahaffey, S.; Reisdorph, R.; Reisdorph, N. J. Chromatogr. A 2013, 1300, 217.   DOI
60 Chetwynd, A. J.; David, A. Talanta 2018, 182, 380.   DOI
61 DeFelice, B. C.; Mehta, S. S.; Samra, S.; C?ajka, T. S.; Wancewicz, B.; Fahrmann, J. F.; Fiehn, O. Anal. Chem. 2017, 89, 3250.   DOI
62 Zhao, S.; Luo, X.; Li, L. Anal. Chem. 2016, 88, 10617.   DOI
63 Guo, K.; Li, L. Anal. Chem. 2010, 82, 8789.   DOI
64 Zhao, S.; Dawe, M.; Guo, K.; Li, L. Anal. Chem. 2017, 89, 6758.   DOI
65 Han, W.; Li, L. Chemical Isotope Labeling LC-MS for Human Blood Metabolome Analysis. In Clinical Metabolomics, Humana Press: New York, 2018, 213.
66 Leng, J.; Wang, H.; Zhang, L.; Zhang, J.; Wang, H.; Guo, Y. Anal. Chim. Acta 2013, 758, 114.   DOI
67 Tayyari, F.; Gowda, G. N.; Gu, H.; Raftery, D. Anal. Chem. 2013, 85, 8715.   DOI
68 Yuan, W.; Edwards, J. L.; Li, S. Chem. Commun. 2013, 49, 11080.   DOI
69 Wong, J.-M. T.; Malec, P. A.; Mabrouk, O. S.; Ro, J.; Dus, M.; Kennedy, R. T. J. Chromatogr. A 2016, 1446, 78.   DOI
70 Chu, J.-M.; Qi, C.-B.; Huang, Y.-Q.; Jiang, H.-P.; Hao, Y.-H.; Yuan, B.-F.; Feng, Y.-Q. Anal. Chem. 2015, 87, 7364.   DOI
71 Dai, W.; Huang, Q.; Yin, P.; Li, J.; Zhou, J.; Kong, H.; Zhao, C.; Lu, X.; Xu, G. Anal. Chem. 2012, 84, 10245.   DOI
72 Yu, Y.; Li, G.; Wu, D.; Liu, J.; Chen, J.; Hu, N.; Wang, H.; Wang, P.; Wu, Y. Anal. Chim. Acta 2020, 1097, 110.   DOI
73 Jia, S.; Xu, T.; Huan, T.; Chong, M.; Liu, M.; Fang, W.; Fang, M. Environ. Sci. Technol. 2019, 53, 5445.   DOI
74 Hao, L.; Zhu, Y.; Wei, P.; Johnson, J.; Buchberger, A.; Frost, D.; Kao, W. J.; Li, L. Anal. Chim. Acta 2019, 1088, 99.   DOI