• 제목/요약/키워드: metabolite analysis

검색결과 447건 처리시간 0.026초

데이터 마이닝을 활용한 효소 대사물의 분석 (Enzyme Metabolite Analysis Using Data Mining)

  • 정희택;박춘구
    • 한국전자통신학회논문지
    • /
    • 제11권10호
    • /
    • pp.969-982
    • /
    • 2016
  • 최근 천연물로부터 신약 후보물질을 개발하려는 연구가 활발히 이루어지고 있다. 인체 내에서 천연물은 주로 효소에 의해 대사된다. 본 연구는 화합물의 인체내 대사반응과 주로 관련된 효소에 의한 대사반응의 특징을 연관규칙마이닝을 활용하여 분석한다. 화합물이 인체 내에서 효소 대사반응과 관련된 데이터를 BRENDA(: BRaunschweig ENzyme DAtabase)로부터 수집하였다. 수집된 데이터를 효소대사반응의 기본 틀에 근거하여, 대사물들을 기질대사물, 생성대사물, 억제대사물, 그리고 활성대사물들로 구분한다. 이러한 대사물들로 이루어진 기질대사물 트랜잭션, 생성대사물 트랜잭션, 그리고 모든 대사물들을 포함한 효소반응트랜잭션들을 구성하였다. 또한 종 정보를 반영한 6개의 트랜잭션들로 구성하였다. 연관규칙 마이닝을 활용하여 6개의 트랜잭션에서 빈발대사물 및 패턴을 분석하였다. 또한 대사물들 사이의 관련성을 분석하였다. 그 결과 효소대사반응에 참여하는 대사물들의 분포와 패턴을 식별할 수 있었다. 더욱이 기질에만 속하는 순수 기질대사물들을 식별하였고 이들 대부분이 아주 낮은 지지도임을 확인할 수 있었다. 연구결과는 순수 기질대사물은 효과적인 대사변환 예측 모델 개발에 활용될 수 있다.

Liquid Chromatography-Mass Spectrometry-Based Chemotaxonomic Classification of Aspergillus spp. and Evaluation of the Biological Activity of Its Unique Metabolite, Neosartorin

  • Lee, Mee Youn;Park, Hye Min;Son, Gun Hee;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권7호
    • /
    • pp.932-941
    • /
    • 2013
  • This work aimed to classify Aspergillus (8 species, 28 strains) by using a secondary metabolite profile-based chemotaxonomic classification technique. Secondary metabolites were analyzed by liquid chromatography ion-trap mass spectrometry (LC-IT-MS) and multivariate statistical analysis. Most strains were generally well separated from each section. A. lentulus was discriminated from the other seven species (A. fumigatus, A. fennelliae, A. niger, A. kawachii, A. flavus, A. oryzae, and A. sojae) with partial least-squares discriminate analysis (PLS-DA) with five discriminate metabolites, including 4,6-dihydroxymellein, fumigatin, 5,8-dihydroxy-9-octadecenoic acid, cyclopiazonic acid, and neosartorin. Among them, neosartorin was identified as an A. lentulus-specific compound that showed anticancer activity, as well as antibacterial effects on Staphylococcus epidermidis. This study showed that metabolite-based chemotaxonomic classification is an effective tool for the classification of Aspergillus spp. with species-specific activity.

Varying Inocula Permutations (Aspergillus oryzae and Bacillus amyloliquefaciens) affect Enzyme Activities and Metabolite Levels in Koji

  • Gil, Hye Jeong;Lee, Sunmin;Singh, Digar;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.1971-1981
    • /
    • 2018
  • In this study, we investigated the altered enzymatic activities and metabolite profiles of koji fermented using varying permutations of Aspergillus oryzae and/or Bacillus amyloliquefaciens. Notably, the protease and ${\beta}$-glucosidase activities were manifold increased in co-inoculated (CO) koji samples (co-inoculation of A. oryzae and B. amyloliquefaciens). Furthermore, gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling indicates that levels of amino acids, organic acids, sugars, sugar alcohols, fatty acids, nucleosides, and vitamins were distinctly higher in CO, SA (sequential inoculation of A. oryzae, followed by B. amyloliquefaciens), and SB (sequential inoculation of B. amyloliquefaciens, followed by A. oryzae). The multivariate principal component analysis (PCA) plot based on GC-MS datasets indicated a clustered pattern for MA and MB (koji samples inoculated either with A. oryzae or B. amyloliquefaciens) across PC2 (20.0%). In contrast, the CO, SA, and SB metabolite profiles displayed segregated patterns across PLS1 (22.2%) and PLS2 (21.1%) in the partial least-square discriminant analysis (PLS-DA) model. Intriguingly, the observed disparity in the levels of primary metabolites was engendered largely by higher relative levels of sugars and sugar alcohols in MA, SA, and CO koji samples, which was commensurate with the relative amylase activities in respective samples. Collectively, the present study emphasizes the utility of integrated biochemical and metabolomic approaches for achieving the optimal permutation of fermentative inocula for industrial koji preparation.

세이보리(S. hortensis)의 정유성분과 대사체 분석에 대하여 (Essential Oil Ingredient and Metabolites Analyses in Savory (Satureja hortensis))

  • 신경순;조태동
    • 한국환경과학회지
    • /
    • 제31권3호
    • /
    • pp.255-263
    • /
    • 2022
  • The relationship between environmental growth conditions of savory(Satureja hortensis) and Zn and vitamin B3 has been previously reported. Based on these results, HPLC and GC-MS were used to investigate the levels of phenolic compounds and perform metabolite analysis, respectively, in plants collected from different areas. Differences were observed in the levels of polyphenols and flavonoids depending on sampled areas and natural conditions. Next, HPLC and metabolite analyses confirmed the presence of bioactive substances. The results also showed that the longer the storage time, the higher was the content of carvacrol and of rosmarinic acid. Finally, the difference in the active ingredients was minimal when plants were cultivated under growth conditions similar to those in the place of origin.

Metabolic Changes of Phomopsis longicolla Fermentation and Its Effect on Antimicrobial Activity Against Xanthomonas oryzae

  • Choi, Jung Nam;Kim, Jiyoung;Ponnusamy, Kannan;Lim, Chaesung;Kim, Jeong Gu;Muthaiya, Maria John;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.177-183
    • /
    • 2013
  • Bacterial blight, an important and potentially destructive bacterial disease in rice caused by Xanthomonas oryzae pv. oryzae (Xoo), has recently developed resistance to the available antibiotics. In this study, mass spectrometry (MS)-based metabolite profiling and multivariate analysis were employed to investigate the correlation between timedependent metabolite changes and antimicrobial activities against Xoo over the course of Phomopsis longicolla S1B4 fermentation. Metabolites were clearly differentiated based on fermentation time into phase 1 (days 4-8) and phase 2 (days 10-20) in the principal component analysis (PCA) plot. The multivariate statistical analysis showed that the metabolites contributing significantly for phases 1 and 2 were deacetylphomoxanthone B, monodeacetylphomoxanthone B, fusaristatin A, and dicerandrols A, B, and C as identified by liquid chromatography-mass spectrometry (LC-MS), and dimethylglycine, isobutyric acid, pyruvic acid, ribofuranose, galactofuranose, fructose, arabinose, hexitol, myristic acid, and propylstearic acid were identified by gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling. The most significantly different secondary metabolites, especially deacetylphomoxanthone B, monodeacetylphomoxanthone B, and dicerandrol A, B and C, were positively correlated with antibacterial activity against Xoo during fermentation.

Blood and milk metabolites of Holstein dairy cattle for the development of objective indicators of a subacute ruminal acidosis

  • Hyun Sang Kim;Jun Sik Eom;Shin Ja Lee;Youyoung Choi;Seong Uk Jo;Sang Suk Lee;Eun Tae Kim;Sung Sill Lee
    • Animal Bioscience
    • /
    • 제36권8호
    • /
    • pp.1199-1208
    • /
    • 2023
  • Objective: The purpose of this study was to perform a comparative analysis of metabolite levels in serum and milk obtained from cows fed on different concentrate to forage feed ratios. Methods: Eight lactating Holstein cows were divided into two groups: a high forage ratio diet (HF; 80% Italian ryegrass and 20% concentrate of daily intake of dry matter) group and a high concentrate diet (HC; 20% Italian ryegrass and 80% concentrate) group. Blood was collected from the jugular vein, and milk was sampled using a milking machine. Metabolite levels in serum and milk were estimated using proton nuclear magnetic resonance and subjected to qualitative and quantitative analyses performed using Chenomx 8.4. For statistical analysis, Student's t-test and multivariate analysis were performed using Metaboanalyst 4.0. Results: In the principal component analysis, a clear distinction between the two groups regarding milk metabolites while serum metabolites were shown in similar. In serum, 95 metabolites were identified, and 13 metabolites (include leucine, lactulose, glucose, betaine, etc.) showed significant differences between the two groups. In milk, 122 metabolites were identified, and 20 metabolites (include urea, carnitine, acetate, butyrate, arabinitol, etc.) showed significant differences. Conclusion: Our results show that different concentrate to forage feed ratios impact the metabolite levels in the serum and milk of lactating Holstein cows. A higher number of metabolites in milk, including those associated with milk fat synthesis and the presence of Escherichia coli in the rumen, differed between the two groups compared to that in the serum. The results of this study provide a useful insight into the metabolites associated with different concentrate to forge feed ratios in cows and may aid in the search for potential biomarkers for subacute ruminal acidosis.

Evaluation of the Biological Activities of Marine Bacteria Collected from Jeju Island, Korea, and Isolation of Active Compounds from their Secondary Metabolites

  • Kim, Hyun-Soo;Zhang, Chao;Lee, Ji-Hyeok;Ko, Ju-Young;Kim, Eun-A;Kang, Nalae;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • 제17권2호
    • /
    • pp.215-222
    • /
    • 2014
  • To explore marine microorganisms with medical potential, we isolated and identified marine bacteria from floats, marine algae, animals, and sponges collected from Jeju Island, Korea. We isolated and identified 21 different strains from the marine samples by 16S rRNA analysis, cultured them in marine broth, and extracted them with ethyl acetate (EtOAc) to collect secondary metabolite fractions. Next, we evaluated their anti-oxidative and anti-inflammatory effects. Among the 21 strains, the secondary metabolite fraction of Bacillus badius had both strong antioxidant and anti-inflammatory activity, and thus was selected for further experiments. An antioxidant compound detected from the secondary metabolite fraction of B. badius was purified by preparative centrifugal partition chromatography (n-hexane:EtOAc:methanol:water, 4:6:4:6, v/v), and identified as diolmycin A2. Additionally, diolmycin A2 strongly inhibited nitric oxide production. Thus, we successfully identified a significant bioactive compound from B. badius among the bacterial strains collected from Jeju Island.

LC-MS/MS Profiling-Based Secondary Metabolite Screening of Myxococcus xanthus

  • Kim, Ji-Young;Choi, Jung-Nam;Kim, Pil;Sok, Dai-Eun;Nam, Soo-Wan;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.51-54
    • /
    • 2009
  • Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.

GC/MS를 이용한 요 중 resveratrol과 그 대사체에 관한 연구 (Studies on resveratrol and its metabolite in human urine by GC/MS)

  • 정현주;팽기정;김연제
    • 분석과학
    • /
    • 제24권2호
    • /
    • pp.142-149
    • /
    • 2011
  • Resveratrol을 GC/TOF-MS를 이용하여 대사체를 확인한 결과, 두 개의 phenyl기를 연결하는 이중결합이 단일결합으로 환원된 구조로 추정되었다. 또한, GC/MSD를 이용하여 resveratrol 및 내인성스테로이드의 분석법에 대한 유효성을 점검한 결과, 회수율은 96.47 - 114.74%의 범위로 나타났으며, intra-day와 inter-day의 정밀도는 1.40 - 10.87%과 1.10 - 10.93% 그리고 정확도는 80.03 - 119.92%과 80.02 - 119.56%로 조사되었고, 모두 0.996이상의 직선성을 나타내어 유효한 분석 방법으로 검증되었다. 한편, 지원자들에게 resveratrol을 경구투여 한 요시료로부터 resveratrol과 그 대사체에 대한 상관성을 조사해본 결과, 요중 최대농도 도달시간이 일반적인 약물(1 - 2시간) 보다 긴 10 - 15시간에 나타났으며, 대사체로의 전환율은 남성보다 여성이 높게 나타났다. 한편, 내인성 스테로이드는 약물 복용 후 20시간 까지는 resveratrol 및 그 대사체와 다소 유사한 분비형태를 나타내었으며, estrone과 estradiol의 경우 여성이 남성에 비해 이 약물에 대한 민감성이 높게 나타났다. 그 외의 내인성 스테로이드는 유의할만한 차별된 분비형태의 변화가 나타나지 않았다. 따라서 resveratrol의 경우 약물의 활성이 남성보다는 여성에게 유의한 영향을 미치는 것으로 추측되었다.

Comparative analysis of the transcriptomes and primary metabolite profiles of adventitious roots of five Panax ginseng cultivars

  • Lee, Yun Sun;Park, Hyun-Seung;Lee, Dong-Kyu;Jayakodi, Murukarthick;Kim, Nam-Hoon;Lee, Sang-Choon;Kundu, Atreyee;Lee, Dong-Yup;Kim, Young Chang;In, Jun Gyo;Kwon, Sung Won;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제41권1호
    • /
    • pp.60-68
    • /
    • 2017
  • Background: Various Panax ginseng cultivars exhibit a range of diversity for morphological and physiological traits. However, there are few studies on diversity of metabolic profiles and genetic background to understand the complex metabolic pathway in ginseng. Methods: To understand the complex metabolic pathway and related genes in ginseng, we tried to conduct integrated analysis of primary metabolite profiles and related gene expression using five ginseng cultivars showing different morphology. We investigated primary metabolite profiles via gas chromatography-mass spectrometry (GC-MS) and analyzed transcriptomes by Illumina sequencing using adventitious roots grown under the same conditions to elucidate the differences in metabolism underlying such genetic diversity. Results: GC-MS analysis revealed that primary metabolite profiling allowed us to classify the five cultivars into three independent groups and the grouping was also explained by eight major primary metabolites as biomarkers. We selected three cultivars (Chunpoong, Cheongsun, and Sunhyang) to represent each group and analyzed their transcriptomes. We inspected 100 unigenes involved in seven primary metabolite biosynthesis pathways and found that 21 unigenes encoding 15 enzymes were differentially expressed among the three cultivars. Integrated analysis of transcriptomes and metabolomes revealed that the ginseng cultivars differ in primary metabolites as well as in the putative genes involved in the complex process of primary metabolic pathways. Conclusion: Our data derived from this integrated analysis provide insights into the underlying complexity of genes and metabolites that co-regulate flux through these pathways in ginseng.