• Title/Summary/Keyword: metabolite M1

Search Result 284, Processing Time 0.037 seconds

α-Glucosidase inhibitory caged xanthones from the resin of Garcinia hanburyi

  • Jin, Young Min;Kim, Jeong Yoon;Lee, Soo Min;Tan, Xue Fei;Park, Ki Hun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.81-86
    • /
    • 2019
  • A yellow resin (gamboge) from Garcinia hanburyi has been widely used as folk medicine due to its antibacterial and antitumor activities. We isolated four ${\alpha}$-glucosidase inhibitory compounds from the methanol extract of gamboge. The compounds (1-4) were identified as gambogoic acid (1), moreollic acid (2), gambogic acid (3), and 10-methoxygambogenic acid (4), respectively through spectroscopic data including 2D-NMR and HREIMS. All compounds were examined in the enzyme inhibition assay against ${\alpha}$-glucosidase to identify their inhibitory potencies and kinetic behavior. All compounds (1-4) showed enzyme inhibition against ${\alpha}$-glucosidase, but the activity was significantly affected by the methoxy group on C-10 of ring A and pentenyl pyran moiety of ring D. For example, compound 1 ($IC_{50}=41.4{\mu}M$) bearing pyran ring eight times effective that 4 ($IC_{50}=350.6{\mu}M$) having geranyl group itself. Most active compound was found out to be gambogoic acid (1) which was analyzed most abundant metabolite in gamboge by LC-ESI-MS/MS. In kinetic study, compounds 1 and 2 were proved as noncompetitive inhibitors.

Isolation and Purification of an Antitumor Metabolite from Alternaria brassicicola SW-3, the Cause of Brassica Black Leaf Spot Disease. (Phytopathogenic fungus Alternaria brassicicola SW-3가 생산하는 항암활성 물질의 분리 정제)

  • 나여정;이방숙;남궁성건;정동선
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.51-56
    • /
    • 2002
  • An antitumor substance was purified from the culture filtrate of phytopathogenic fungus Alternaria brassicicola SW-3 isolated from soil of a chinese cabbage patch, and its characteristics were investigated. Antitumor activity of A. brassicicola SW-3 was measured by MTT assay. The cytotoxic activity against human cancer cell line was detected in the culture filtrate of A. brassicicola SW-3, but no activity found in mycelium. Antitumor substance was isolated from the culture broth by ethyl acetate extraction and purified by silica gel column chromatography. Structure of the purified compound was analyzed by the instrumental analysis such as $^1$H-NMR, $^{13}$ C-NMR and IR spectroscopy. The purified fungal metabolite of an A. brassicicola SW-3, consists of 11 carbon chain with two hydroxyl groups and two epoxides which is identical to depudecin. The $IC_{50}$/ values of the active compound identified as depudecin were $69\mu$g/mL and $57\mu$g/mL against mouse melanoma B16BL6 cell line, and human hepatoma SK-HEP1 cell line, respectively.

Porphyrin Derivatives from a Recombinant Escherichia coli Grown on Chemically Defined Medium

  • Lee, Min Ju;Chun, Se-Jin;Kim, Hye-Jung;Kwon, An Sung;Jun, Soo Youn;Kang, Sang Hyeon;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1653-1658
    • /
    • 2012
  • We have reported previously that a recombinant Escherichia coli co-expresses aminolevulinic acid (ALA) synthase, an NADP-dependent malic enzyme, and a dicarboxylate transporter-produced heme, an iron-chelated porphyrin, in a succinate-containing complex medium. To develop an industrially plausible process, a chemically defined medium was formulated based on M9 minimal medium. Heme synthesis was enhanced by adding sodium bicarbonate, which strengthened the C4 metabolism required for the precursor metabolite, although a pH change discouraged cell growth. Increasing the medium pH buffering capacity (100mM phosphate buffer) and adding sodium bicarbonate enabled the recombinant E. coli to produce heme at rates 60% greater than those in M9 minimal medium. Adding growth factors (1 mg/l thiamin, 0.01 mg/l biotin, 5 mg/l nicotinic acid, 1 mg/l pantothenic acid, and 1.4 mg/l cobalamin) also induced positive heme production effects at levels twice of heme production in M9-based medium. Porphyrin derivatives and heme were found in the chemically defined medium, and their presence was confirmed by liquid chromatography/mass spectroscopy (LC/MS). The formulated medium allowed for the production of $0.6{\mu}M$ heme, $29{\mu}M$ ALA, $0.07{\mu}M$ coproporphyrin I, $0.21{\mu}M$ coproporphyrin III, and $0.23{\mu}M$ uroporphyrin in a 3 L pH-controlled culture.

Absorption, Distribution, Metabolism, and Excretion of CKD-732, a Novel Antiangiogenic Fumagillin Derivative, in Rats, Mice, and Dogs

  • Lee, Ho-Sup;Park, Won-Kyu;Son, Hoe-Joo;Lee, Sung-Sook;Kim, Joon-Kyum;Ahn, Soon-Kil;Hong, Chung-Il;Min, Hye-Ki;Kim, Myung-Soo;Myung, Seung-Woon
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.265-272
    • /
    • 2004
  • The pharmacokinetics of CKD-732 (6-0-4-[dimethyl-aminoethoxy)cinnamoyl]-fumagillolㆍhemioxalate) was investigated in male SD rats and beagle dogs after bolus intravenous administration. The parent compound and metabolites obtained from in vitro and in vivo samples were determined by LC/MS. The main metabolite was isolated and identified as an N-oxide form of CKD-732 by NMR and LC/MS/MS. CKD-732 was metabolized into either M11 or others by rapid hydroxylation, demethylation, and hydrolysis. The blood level following the intravenous route declined in first-order kinetics with $T_{1}$2/$\beta$ values of 0.72-0.78 h for CKD-732 and 0.92-1.09 h for M11 in rats at a dose of 7.5-30 mg/kg. In dogs, $T_{1}$2/$\beta$ values of CKD-732 and M11 were 1.54 and 1.79 h, respectively. Moreover, AUC values increased dose dependently for CKD-732 and M11 in rats and dogs. The CLtot and Vdss did not change significantly with increasing dose, indicating linear pharmacokinetic patterns. The excretion patterns through the urine, bile, and feces were also examined in the animals. The total amount excreted in urine, bile, and feces was 2.13% for CKD-732 and 1.29% for M11 in rats, and 1.58% for CKD-732 and 2.28% for M11 in dogs.

Development of Drug Candidate for the Treatment of Lymphedema Using Natural Product and its Derivatives from Rhus verniciflua Strokes (옻나무(Rhus verniciflua Strokes) 주요 단일성분과 그 유도체를 이용한 다중기전 림프부종 치료제 후보물질 개발)

  • Sukchan Lee;Jin-Mo Ku
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.20-20
    • /
    • 2022
  • Herein, we demonstrate that butein (1) can prevent swelling in a murine lymphedema model by suppressing tumor necrosis factor α (TNF-α) production. Butein derivatives were synthesized and evaluated to identify compounds with in vitro anti-inflammatory activity. Among them, 20 µM of compounds 7j, 7m, and 14a showed 50% suppression of TNF-α production in mouse peritoneal macrophages after lipopolysaccharide stimulation. Compound 14a, exhibited the strongest potency with an in vitro IC50 of 14.6 µM and suppressed limb volume by 70% in a murine lymphedema model. The prodrug strategy enabled a six-fold increase in kinetic solubility of compound 1 and five-fold higher levels of active metabolite in the blood for compound 14a via oral administration in the pharmacokinetics study. We suggest that the compound 14a could be developed as a potential therapeutic agent targeting anti-inflammatory activity to alleviate lymphedema progression.

  • PDF

Bacterial neuraminidase inhibitory linarin from Dendranthema zawadskii

  • Ju Yeon Kim;Jae Yeon Park;Yun Gon Son;Kyu Lim Kim;Jeong Yoon Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.1-6
    • /
    • 2023
  • Dendranthema zawadskii is a one of the popular plants as native in South Korea. In this study, linarin was isolated and purified using silica-gel, Diaion, and Sephadex LH-20 from the aerial parts of D. zawadskii. The chemical structure was completely identified through spectroscopic data including 1D, 2D nucleic magnetic resonance, and HRFABMS. Furthermore, linarin inhibited the bacterial neuraminidase (BNA) activity with 13.5 μM of IC50 dose-dependently. Through the enzyme kinetic experiments, linarin as BNA inhibitor exhibited a typical noncompetitive inhibition mode which Km was contestant and Vmax decreased as the concentration of the inhibitor increased. It was further identified that the inhibition constant was 16.0 μM. Linarin was the most abundance metabolite in the aerial part of D. zawadskii extract by UHPLC-TOF/MS analysis. Therefore, D. zawadskii and its main component are expected that it can be effectively used for the infection and inflammation caused by bacteria.

Enhanced Salt Stress Tolerance in Transgenic Potato Plants Expressing IbMYB1, a Sweet Potato Transcription Factor

  • Cheng, Yu-Jie;Kim, Myoung-Duck;Deng, Xi-Ping;Kwak, Sang-Soo;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1737-1746
    • /
    • 2013
  • IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

Biological Activities and Metabolite Analysis of Various Extracts and Fractions from Red Ginseng Marc

  • Lee, Dong Gyu;Jang, Ik Soon;Kang, Young-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.597-603
    • /
    • 2020
  • Red ginseng marc (RGM) has been used on primary industries using fertilizer or forage, and it mostly has been dumped. To improve utilization of RGM, the biological activities of RGM were examined. RGM was extracted and fractionated using various solvents and their biological activities were compared. The hexane fraction from the methanol extract of RGM (RGMMH) showed strong anti-cancer activity (58.56 ± 6.04% at 100 ㎍/mL) and anti-inflammatory effect (65.72 ± 1.33% at 100 ㎍/mL). But, oil extract of RGM extracted with hexane (RGMH) showed low activities (anti-cancer: 16.42 ± 3.33%, at 100 ㎍/mL, anti-inflammatory activity: 29.46 ± 2.10%, at 100 ㎍/mL). Their metabolites were analyzed using HPLC. Panaxydol known as anti-cancer compound of RGM was one of major compounds in RGMMH. Meanwhile, panaxydol was detected in trace amount in red ginseng marc oil (RGMH). In addition, RGMMH and RGMH showed big differences in HPLC profiling. This research suggests optimal extraction method of RGM oil.

Microbial Conversion of Ginsenoside from the Extract of Korean Red Ginseng (Panax ginseng) by Lactobacillus sp.

  • Cho, Hye-Jin;Jung, Eun-Young;Oh, Sung-Hoon;Yoon, Brian;Suh, Hyung-Joo;Lee, Hyun-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2010
  • Thirty-four strains of Lactobacillus species were isolated from soil and eight of these isolates (M1-4 and P1-4) were capable of growing on red ginseng agar. The M1 and P2 strains were determined to be L. plantarum and other strains (M2, M3, M4, P1, P3 and P4) were determined to be L. brevis. Fermentation of red ginseng extract (RGE) with strains M1, M2, P2 and P4 resulted in a low level of total carbohydrate content (174.3, 170.0, 158.8 and 164.8 mg/mL, respectively). RGE fermented by M3 showed a higher level of uronic acid than the control. The polyphenol levels in RGE fermented by M1, P1 and P2 (964.9, 941.7 and $965.3\;{\mu}g/mL$, respectively) were higher than the control ($936.8\;{\mu}g/mL$). Total saponin contents in fermented RGE (except M1) were higher than the control. RGE fermented by M2 and M3 had the highest levels of total ginsenosides (31.7 and 32.7 mg/mL, respectively). The levels of the ginsenoside Rg3 increased from 2.6 mg/mL (control) to 3.0 mg/mL (M2) or 3.1 mg/mL (M3). RGE fermented by M2 and M3 also had the highest levels of Rg5+Rk1 (7.7 and 8.3 mg/mL, respectively). Metabolite contents of ginsenoside (sum of CK, Rh1, Rg5, Rk1, Rg3 and Rg2) of M2 (13.0 mg/mL) and M3 (13.9 mg/mL) were also at a high level among the fermented RGE. Protopanaxadiol and protopanaxatriol content of ginsenoside of M2 (10.9 and 5.4 mg/mL, respectively) and M3 (11.0 and 5.7 mg/mL, respectively) were at higher levels than other fermented RGE.

The Effects of Sodium Chloride and the Cultivation Method on Antioxidant Compounds and Activities in Wheat (Triticum aestivum) Sprouts (염화나트륨 처리 및 재배방법이 새싹밀의 항산화 성분 및 활성에 미치는 영향)

  • Yang, Ji Yeong;Lee, HanGyeol;Seo, Woo Duck;Lee, Mi Ja;Song, Seung-Yeob;Choi, June-Yeol;Kim, Hyun Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.3
    • /
    • pp.213-222
    • /
    • 2022
  • Sprouts have various health benefits. Specifically, wheat sprouts are rich in bioactive compounds, such as vitamins and polyphenols. Elicitation induces and enhances secondary metabolite biosynthesis in plants. Therefore, in this study, we investigated the effects of sodium chloride (NaCl) treatments on the growth profile, free amino acid content, and antioxidant activity of germinated wheat (Triticum aestivum). Wheat seeds were germinated at 20℃ for 10 days and treated with 0, 2, 4, 7.5, and 10 mM of NaCl 10 days before harvesting. Treating the soil bed with NaCl increased the nutritional component amounts, such as free amino acids and γ-aminobutyric acid. The chlorophyll a and b concentrations were the highest in the hydroponic system treated with 7.5 mM NaCl. In addition, the polyphenol and flavonoid contents of sprouts treated with 2 and 7.5 mM NaCl were 1.94 and 1.34 times higher than that of the control sprouts (0 mM NaCl, water only), respectively. These results suggest that 2 to 4 mM NaCl treatments improve the nutritional and food quality of wheat sprouts more than water only.