Browse > Article
http://dx.doi.org/10.4014/jmb.1208.08054

Porphyrin Derivatives from a Recombinant Escherichia coli Grown on Chemically Defined Medium  

Lee, Min Ju (Department of Biotechnology, The Catholic University of Korea)
Chun, Se-Jin (Department of Biotechnology, The Catholic University of Korea)
Kim, Hye-Jung (Department of Biotechnology, The Catholic University of Korea)
Kwon, An Sung (iNtRON Biotechnology Inc.)
Jun, Soo Youn (iNtRON Biotechnology Inc.)
Kang, Sang Hyeon (iNtRON Biotechnology Inc.)
Kim, Pil (Department of Biotechnology, The Catholic University of Korea)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1653-1658 More about this Journal
Abstract
We have reported previously that a recombinant Escherichia coli co-expresses aminolevulinic acid (ALA) synthase, an NADP-dependent malic enzyme, and a dicarboxylate transporter-produced heme, an iron-chelated porphyrin, in a succinate-containing complex medium. To develop an industrially plausible process, a chemically defined medium was formulated based on M9 minimal medium. Heme synthesis was enhanced by adding sodium bicarbonate, which strengthened the C4 metabolism required for the precursor metabolite, although a pH change discouraged cell growth. Increasing the medium pH buffering capacity (100mM phosphate buffer) and adding sodium bicarbonate enabled the recombinant E. coli to produce heme at rates 60% greater than those in M9 minimal medium. Adding growth factors (1 mg/l thiamin, 0.01 mg/l biotin, 5 mg/l nicotinic acid, 1 mg/l pantothenic acid, and 1.4 mg/l cobalamin) also induced positive heme production effects at levels twice of heme production in M9-based medium. Porphyrin derivatives and heme were found in the chemically defined medium, and their presence was confirmed by liquid chromatography/mass spectroscopy (LC/MS). The formulated medium allowed for the production of $0.6{\mu}M$ heme, $29{\mu}M$ ALA, $0.07{\mu}M$ coproporphyrin I, $0.21{\mu}M$ coproporphyrin III, and $0.23{\mu}M$ uroporphyrin in a 3 L pH-controlled culture.
Keywords
Porphyrin derivatives; recombinant E. coli; chemically defined medium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Duin, E. C., M. E. Lafferty, B. R. Crouse, R. M. Allen, I. Sanyal, D. H. Flint, and M. K. Johnson. 1997. [2Fe-2S] to [4Fe-4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry 36: 11811-11820.   DOI   ScienceOn
2 Kwon, O. H., S. Kim, D. H. Hahm, S. Y. Lee, and P. Kim. 2009. Potential application of the recombinant Escherichia colisynthesized heme as a bioavailable iron source. J. Microbiol. Biotechnol. 19: 604-609.
3 Kwon, S. J., A. L. de Boer, R. Petri, and C. Schmidt-Dannert. 2003. High-level production of porphyrins in metabolically engineered Escherichia coli: Systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69: 4875-4883.   DOI   ScienceOn
4 Kwon, Y. D., O. H. Kwon, H. S. Lee, and P. Kim. 2007. The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J. Appl. Microbiol. 103: 2340-2345.   DOI   ScienceOn
5 Labbe-Bois, R., M. Simon, J. Rytka, J. Litwinska, and T. Bilinski. 1980. Effect of 5-aminolevulinic acid synthesis deficiency on expression of other enzymes of heme pathway in yeast. Biochem. Biophys. Res. Commun. 95: 1357-1363.   DOI   ScienceOn
6 Li, D. 2005. PGC-1alpha: Looking behind the sweet treat for porphyria. Cell 122: 487-489.   DOI   ScienceOn
7 Neidle, E. L. and S. Kaplan. 1993. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J. Bacteriol. 175: 2292-2303.
8 Pollich, M. and G. Klug. 1995. Identification and sequence analysis of genes involved in late steps in cobalamin (vitamin B12) synthesis in Rhodobacter capsulatus. J. Bacteriol. 177: 4481-4487.
9 Rae, T. D. and H. M. Goff. 1998. The heme prosthetic group of lactoperoxidase. Structural characteristics of heme l and heme lpeptides. J. Biol. Chem. 273: 27968-27977.   DOI   ScienceOn
10 Sewell, A. L., M. V. Villa, M. Matheson, W. G. Whittingham, and R. Marquez. 2011. Fast and flexible synthesis of pantothenic acid and CJ-15,801. Org. Lett. 13: 800-803.   DOI   ScienceOn
11 Shin, J. A., Y. D. Kwon, O. H. Kwon, H. S. Lee, and P. Kim. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. J. Microbiol. Biotechnol. 17: 1579-1584.
12 Skovran, E. and D. M. Downs. 2000. Metabolic defects caused by mutations in the isc gene cluster in Salmonella enterica serovar Typhimurium: Implications for thiamine synthesis. J. Bacteriol. 182: 3896-3903.   DOI   ScienceOn
13 Warren, M. J., E. L. Bolt, C. A. Roessner, A. I. Scott, J. B. Spencer, and S. C. Woodcock. 1994. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem. J. 302(Pt 3): 837-844.
14 Afonso, S., R. Enriquez de Salamanca, and A. Batlle. 1998. Porphyrin-induced protein structural alternations of heme enzymes. II: Protection of 5-aminolevulinic acid dehydratase and porphobilinogen deaminase from the photodynamic and non-photodynamic effects of URO and PROTO. Int. J. Biochem. Cell Biol. 30: 535-543.   DOI   ScienceOn
15 Bu, W., N. Myers, J. D. McCarty, T. O'Neill, S. Hollar, P. L. Stetson, and D. W. Sved. 2003. Simultaneous determination of six urinary porphyrins using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 783: 411-423.   DOI   ScienceOn
16 Chen, W., C. S. Russell, Y. Murooka, and S. D. Cosloy. 1994. 5-Aminolevulinic acid synthesis in Escherichia coli requires expression of hemA. J. Bacteriol. 176: 2743-2746.