• Title/Summary/Keyword: metabolic state

Search Result 279, Processing Time 0.028 seconds

Effect of Thyroid Hormone on the Gene Expression of Myostatin in Rat Skeletal Muscle

  • Ma, Yi;Chen, Xiaoqiang;Li, Qing;An, Xiaorong;Chen, Yongfu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.275-281
    • /
    • 2009
  • Modification of thyroid hormone levels has a profound effect on skeletal muscle differentiation, predominantly through direct regulation involving thyroid hormone receptors. Nevertheless, little is known about the regulation of myostatin gene expression in skeletal muscle due to altered concentrations of thyroid hormone. Thus, the goal of our study was to find out whether altered thyroid states could change the gene expression of myostatin, the most powerful inhibitor of skeletal muscle development. A hyperthyroid state was induced in rats by daily injections of L-thyroxine 20 mg/100 g body weight for 14 days, while a hypothyroid state was induced in another group of rats by administering methimazole (0.04%) in drinking water for 14 days. After a period of 14 days of L-thyroxine treatment we observed a significant increase of myostatin expression both in mRNA and protein level. However, decreased expression of myostatin mRNA and protein were observed in hypothyroid rats. Furthermore, our studies demonstrated that the upregulation of myostatin gene expression might be responsible for the loss of body weight induced by altered thyroid hormone levels. We concluded that myostatin played a role in a metabolic process in muscle that was regulated by thyroid hormone.

Paralytic Ileus Secondary to Electrolyte Imbalance: A Case Study in a 16 Year Old Female

  • OKAFOR, Henry Chukwuemeka;IKPEAMA, Osita John;OKAFOR, Jane Nkechinyere;OKAFOR, Rita Ifeyinwa
    • The Korean Journal of Food & Health Convergence
    • /
    • v.8 no.1
    • /
    • pp.17-20
    • /
    • 2022
  • Paralytic ileus is a metabolic state in which the intestines fail to transmit peristalsis due to failure of the neuromuscular mechanism in the small intestines and colon. It is a major cause of morbidity in hospitalized patients especially during late presentations and points of mismanagement. The causes include infections, electrolyte imbalance (hypokalemia, hyponatremia), surgeries and medications. When the exact cause of the disease condition is identified and corrected, paralytic ileus is usually resolved. This case report is that of a 16 year old female who was admitted and managed as a case of paralytic ileus. The patient presented with symptoms of fever, abdominal pain, abdominal distension, vomiting and inability to pass stool or flatus. There was associated body weakness, reduced urine output and weight loss. She was properly examined clinically and sent for various investigations. Investigations such plain abdominal X-Ray, serum electrolyte estimation, chest X-Ray and full blood count were carried out. The results of the investigations done were in keeping with the diagnosis of paralytic ileus, electrolyte imbalance and ongoing sepsis. She was subsequently managed through nil per oral, adequate fluid rehydration, antibiotics and correction of electrolyte imbalance. Following stable clinical state and investigation results, she was discharged and advised on follow-up.

Effect of Short Termed Fasting on the Usage Patterns of Metabolic Energy Sources during Exercise in Man (사람에 있어서 단기간의 절식이 운동에너지원의 이용양상에 미치는 영향)

  • Kim, Jang-Y.;Lee, Yang-M.;Lee, Suck-K.
    • Journal of Yeungnam Medical Science
    • /
    • v.3 no.1
    • /
    • pp.269-278
    • /
    • 1986
  • The purpose of this study was to know the effect of shourt termed fasting on the usage of metabolic energy sources and the metabolic differences between non-athletic and athletic subjects. Subjects were divided into non-athletic and athletic group and exercise was loaded on both groups after feeding and fasting. Exercise was loaded by a treadmill running at the speed of 8km/hour for 30 minutes in both groups. The experiment yielded following results. In the fed state, the level of plasma FFA increased markedly after 15 and 30 minutes of exercise compared with it's level of pre-exercise period in both groups. In the fasted state, the level of plasma FFA in non-athletic group increased steadily according to the duration of exercise, while it's level in athletic group showed no changes. At pre-exercise period, the level of plasma FFA was higher in fasted state than fed state. Immediately before the exercise and 15 and 30 minutes after the exercise, blood for the determination of plasma free fatty acid(FFA), glucose, triglyceride(TG)and cholesterol was sampled from antecubital vein, and simultaneously heart rate was measured. In the fed state, the level of plasma glucose was increased mildly according to exercise, and in the fasted state it's level increased according to exercise in both groups also. In the fasted state, the level of plasma TG was lower than that in the fed state. The level of plasma TG and cholesterol in the fed state was no changed by the exercise from the pre-exercise period. The level of plasma cholesterol in athletic group had tendency to lower than that in non-athletic group. Heart rate increased markedly according to exercise in both groups, but the athletic group's increasing rate of heart rate was lower than the non-athletic group's heart rate increased according to exercise and athletic groups heart rate increased early period of exercise, but did not change during lates post-period of exercise.

  • PDF

A Case of Propionic Acidemia Presenting with Dilated Cardiomyopathy (확장성 심근병증으로 발현된 프로피온산혈증 1례)

  • Son, Jisoo;Choi, Yoon-Ha;Seo, Go Hun;Kang, Minji;Lee, Beom Hee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2021
  • Propionic acidemia (PA) is an inherited autosomal recessive disorder, due to the deficiency of propionyl-CoA carboxylase (PCC). PCC is the enzyme which catalyzes the conversion of propionyl-CoA to D-methylmalonyl-CoA, and it is critical for the metabolism of amino acids, odd-chain fatty acids, and side chains of cholesterol. The clinical manifestations present mostly at the neonatal period with life-threatening metabolic acidosis and hyperammonemia. Here, we described a case of a 16-year-old Korean boy with late-onset PA who presented with embolic cerebral infarction due to dilated cardiomyopathy (DCMP) with left ventricular noncompaction. And he has family history of sudden cardiac death, so we performed metabolic screening and genetic tests. Elevated levels of 3-hydroxypropionic acid, methylcitric acid and propionylglycerine were detected in urine. Plasma acylcarnitine profile showed elevated propionylcarnitine (C3). Diagnosis of PA was confirmed by genetic analysis, which revealed compound heterozygous mutations, c.[1151T>G] (p.[Phe384Cys]) and c.[1228C>T] (p.[Arg410Trp]) in PCCB gene. His heart function is in improving state and the results of biochemical analysis are stable with heart failure medication and metabolic managements. We present a case of patient without episodes of metabolic decompensation who manifests DCMP as the first symptom of PA.

Evaluation of New Metallized Direct Dyes for Mutagenicity Using the Salmonella Mammalian Mutagenicity Assay

  • Rae Jin-Seok;Freeman Harold S.
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.235-243
    • /
    • 2005
  • A series of new metallized direct dyes based on benzidine congeners, 2,2'-dimethyl-5,5'-dipropoxybenzidine and 5,5'-dipropoxybenzidine, were evaluated for mutagenicity in Salmonella typhimurium strains TA98 and TA 100. All of the dyes examined were judged to be non-mutagenic with and without metabolic activation while toxicity was seen in some dyes at high doses. The study also suggested that the standard Salmonella mutagenicity plate-incorporated assay was an excellent method for evaluation of dyes for mutagenicity.

Evaluation of New Direct Dyes for Mutagenicity Using the Salmonella Mammalian Mutagenicity Assay

  • Bae Jin-Seok;Freeman Harold S.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.297-305
    • /
    • 2005
  • A series of new direct dyes based on benzidine congeners, 2,2'-dimethyl-5,5'-dipropoxybenzidine and 5,5'-dipropoxybenzidine, were evaluated for mutagenicity in Salmonella typhimurium strains TA98 and TA100. All of the dyes examined were judged to be non-mutagenic with and without metabolic activation while toxicity was seen in some dyes at high doses. The study also suggested that the standard Salmonella mutagenicity plate-incorporated assay was an excellent method for evaluation of direct dyes for mutagenicity.

Regulation of ANKRD9 expression by lipid metabolic perturbations

  • Wang, Xiaofei;Newkirk, Robert F.;Carre, Wilfrid;Ghose, Purnima;Igobudia, Barry;Townsel, James G.;Cogburn, Larry A.
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.568-573
    • /
    • 2009
  • Fatty acid oxidation (FAO) defects cause abnormal lipid accumulation in various tissues, which provides an opportunity to uncover novel genes that are involved in lipid metabolism. During a gene expression study in the riboflavin deficient induced FAO disorder in the chicken, we discovered the dramatic increase in mRNA levels of an uncharacterized gene, ANKRD9. No functions have been ascribed to ANKRD9 and its orthologs, although their sequences are well conserved among vertebrates. To provide insight into the function of ANKRD9, the expression of ANKRD9 mRNA in lipidperturbed paradigms was examined. The hepatic mRNA level of ANKRD9 was repressed by thyroid hormone ($T_3$) and fasting, elevated by re-feeding upon fasting. However, ANKRD9 mRNA level is reduced in response to apoptosis. Transient transfection assay with green fluorescent protein tagged- ANKRD9 showed that this protein is localized within the cytoplasm. These findings point to the possibility that ANKRD9 is involved in intracellular lipid accumulation.

Early-life exposure to endocrine disrupting chemicals associates with childhood obesity

  • Yang, Chunxue;Lee, Hin Kiu;Kong, Alice Pik Shan;Lim, Lee Ling;Cai, Zongwei;Chung, Arthur C.K.
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.182-195
    • /
    • 2018
  • Increasing prevalence of childhood obesity poses threats to the global health burden. Because this rising prevalence cannot be fully explained by traditional risk factors such as unhealthy diet and physical inactivity, early-life exposure to endocrine disrupting chemicals (EDCs) is recognized as emerging novel risk factors for childhood obesity. EDCs can disrupt the hormone-mediated metabolic pathways, affect children's growth and mediate the development of childhood obesity. Many organic pollutants are recently classified to be EDCs. In this review, we summarized the epidemiological and laboratory evidence related to EDCs and childhood obesity, and discussed the possible mechanisms underpinning childhood obesity and early-life exposure to non-persistent organic pollutants (phthalates, bisphenol A, triclosan) and persistent organic pollutants (dichlorodip henyltrichloroethane, polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances). Understanding the relationship between EDCs and childhood obesity helps to raise public awareness and formulate public health policy to protect the youth from exposure to the harmful effects of EDCs.

Methods on improvements of the poor oral bioavailability of ginsenosides: Pre-processing, structural modification, drug combination, and micro- or nano- delivery system

  • Qi-rui Hu;Huan Hong;Zhi-hong Zhang;Hua Feng;Ting Luo;Jing Li;Ze-yuan Deng;Fang Chen
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.694-705
    • /
    • 2023
  • Panax ginseng Meyer is a traditional Chinese medicine that is widely used as tonic in Asia. The main pharmacologically active components of ginseng are the dammarane-type ginsenosides, which have been shown to have anti-cancer, anti-inflammatory, immunoregulatory, neuroprotective, and metabolic regulatory activities. Moreover, some of ginsenosides (eg, Rh2 and Rg3) have been developed into nutraceuticals. However, the utilization of ginsenosides in clinic is restrictive due to poor permeability in cells and low bioavailability in human body. Obviously, the dammarane skeleton and glycosyls of ginsenosides are responsible for these limitations. Therefore, improving the oral bioavailability of ginsenosides has become a pressing issue. Here, based on the structures of ginsenosides, we summarized the understanding of the factors affecting the oral bioavailability of ginsenosides, introduced the methods to enhance the oral bioavailability and proposed the future perspectives on improving the oral bioavailability of ginsenosides.