• Title/Summary/Keyword: metabolic homeostasis

Search Result 177, Processing Time 0.021 seconds

Relationship between Nutrients Intakes, Dietary Quality, and hs-CRP in Korea Metabolic Syndrome Patients - The 2015 Korea National Health and Nutrition Examination Survey - (한국 성인 남녀 대사증후군 집단의 영양소 섭취와 식사의 질 및 hs-CRP와 관련성 - 국민건강영양조사(2015년) 자료를 활용하여 -)

  • Kim, Mi Sung;Kim, Byung Sook;Lee, Jong Sin;Oh, Gyung Jae;Han, Soung Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.3
    • /
    • pp.425-434
    • /
    • 2018
  • Metabolic syndrome is a risk factor for cardiovascular and type 2 diabetes. This study was conducted to examine the relevance between nutrition intake, meal quality, and high-sensitivity C-reactive protein in Koreans with metabolic syndrome. The 2,536 subjects, aged 19~64, who participated in 2015 National Nutrition Survey were included in this study. The 24-hour recall method was employed to analyze nutrition intake and dietary quality. Subjects were grouped into either the non-metabolic syndrome group (n=1,938) or the metabolic syndrome group (n=598). Total males and females were divided into 3 groups according to the high-sensitivity C-reactive protein (hs-CRP) level to study its relationship to metabolic syndrome and its components, including odds ratio (OR) and confidence interval (CI). Results showed the homeostasis model assessment of insulin resistance (HOMA-IR) value was higher in the metabolic syndrome group (3.37) than non-metabolic syndrome group (1.57) (p<0.001). In the Index of Nutrition Quality, males in the non-metabolic syndrome group showed higher niacin (p<0.05) than males in metabolic syndrome group. Females in the non-metabolic syndrome group had higher vitamin $B_1$ (p<0.01), vitamin $B_2$ (p<0.001), niacin (p<0.05), calcium (p<0.001), and phosphate (p<0.01). Female in the high hs-CRP group showed high OR in blood glucose component (OR 2.488, 95% CI: 1.269~4.879) and metabolic syndrome risk (OR 2.856, 95% CI: 1.292~6.314). Females in the middle hs-CRP group had high triglycerides component (OR 2.956, 95% CI: 1.920~4.551), compared to the low hs-CRP group. The study showed females with higher hs-CRP had a higher risk of metabolic syndrome.

Modulation of the Somatotropic Axis in Periparturient Dairy Cows

  • Kim, Jin Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.147-154
    • /
    • 2014
  • This review focuses on modulation of growth hormone (GH) and its downstream actions on periparturient dairy cows undergoing physiological and metabolic adaptations. During the periparturient period, cows experience a negative energy balance implicating that the feed intake does not meet the total energy demand for the onset of lactation. To regulate this metabolic condition, key hormones of somatotropic axis such as GH, IGF-I and insulin must coordinate adaptations required for the preservation of metabolic homeostasis. The hepatic GHR1A transcript and GHR protein are reduced at parturition, but recovers on postpartum. However, plasma IGF-I concentration remains low even though hepatic abundance of the GHR and IGF-I mRNA return to pre-calving value. This might be caused by alternation in IGFBPs and ALS genes, which consequently affect the plasma IGF-I stability. Plasma insulin level declines in a parallel manner with the decrease in plasma IGF-I after parturition. Increased GH stimulates the lipolytic effects and hepatic glucose synthesis to meet the energy requirement for mammary lactose synthesis, suggesting that GH antagonizes insulin-dependent glucose uptake and attenuates insulin action to decrease gluconeogenesis.

Potential Benefit of Metformin as Treatment for Colon Cancer: the Evidence so Far

  • Abdelsatir, Azza Ali;Husain, Nazik Elmalaika;Hassan, Abdallah Tarig;Elmadhoun, Wadie M;Almobarak, Ahmed O;Ahmed, Mohamed H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8053-8058
    • /
    • 2016
  • Metformin is known as a hypoglycaemic agent that regulates glucose homeostasis by inhibiting liver glucose production and increasing muscle glucose uptake. Colorectal cancer (CRC) is one of the most common cancers worldwide, with about a million new cases diagnosed each year. The risk factors for CRC include advanced age, smoking, black race, obesity, low fibre diet, insulin resistance, and the metabolic syndrome. We have searched Medline for the metabolic syndrome and its relation to CRC, and metformin as a potential treatment of colorectal cancer. Administration of metformin alone or in combination with chemotherapy has been shown to suppress CRC. The mechanism that explains how insulin resistance is associated with CRC is complex and not fully understood. In this review we have summarised studies which showed an association with the metabolic syndrome as well as studies which tackled metformin as a potential treatment of CRC. In addition, we have also provided a summary of how metformin at the cellular level can induce changes that suppress the activity of cancer cells.

Serum Cholesterol and 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (혈청 콜레스테롤과 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase)

  • Choi, Yong-Soon;Lee, Sang-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.5
    • /
    • pp.580-593
    • /
    • 1992
  • Cholesterol have many essential functions as a component of cellular and subcellular membranes, metabolic precursor of bile acids and steroid hormones, and obligatory part of the metabolic systems involved in DNA synthesis and cell division. These essential funtions demand a continuous and appropriate supply of cholesterol to the tissues. Body cholesterol pool is maintained by the balance of acquirement from diets, de novo synthesis, and excretion either as bile acids or neutral steroids. In these metabolic process, cholesterol biosynthesis is controlled by the change in the activity of 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA) reductase. Under most physiological or nutritional situations, the activity of this enzyme is adroitly regulated to maintain tissue cholesterol balance. Excess cholesterol accumulation in the cells induces the decrease in the number of LDL-receptor, followed by the increase in the level of serum LDL-cholesterol. Increase in the level of serum cholesterol appears to be an important determinant for the incidence of the coronary heart disease. Dietary intervention may be helpful in alleviating an increase in the level of serum cholesterol or body cholesterol pool.

  • PDF

Flightless-I Controls Fat Storage in Drosophila

  • Park, Jung-Eun;Lee, Eun Ji;Kim, Jung Kwan;Song, Youngsup;Choi, Jang Hyun;Kang, Min-Ji
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.603-611
    • /
    • 2018
  • Triglyceride homeostasis is a key process of normal development and is essential for the maintenance of energy metabolism. Dysregulation of this process leads to metabolic disorders such as obesity and hyperlipidemia. Here, we report a novel function of the Drosophila flightless-I (fliI) gene in lipid metabolism. Drosophila fliI mutants were resistant to starvation and showed increased levels of triglycerides in the fat body and intestine, whereas fliI overexpression decreased triglyceride levels. These flies suffered from metabolic stress indicated by increased levels of trehalose in hemolymph and enhanced phosphorylation of eukaryotic initiation factor 2 alpha ($eIF2{\alpha}$). Moreover, upregulation of triglycerides via a knockdown of fliI was reversed by a knockdown of desat1 in the fat body of flies. These results indicate that fliI suppresses the expression of desat1, thereby inhibiting the development of obesity; fliI may, thus, serve as a novel therapeutic target in obesity and metabolic diseases.

Flavonoids Fraction of Mespilus Germanica Alleviates Insulin Resistance in Metabolic Syndrome Model of Ovariectomized Rats via Reduction in Tumor Necrosis Factor-α

  • Kouhestani, Somayeh;Zare, Samad;Babaei, Parvin
    • Journal of Menopausal Medicine
    • /
    • v.24 no.3
    • /
    • pp.169-175
    • /
    • 2018
  • Objectives: The rate of metabolic syndrome (MetS) in women diagnosed as they age is one of the main concerns of health cares. Recently new strategies used to prevent progressions of MetS toward the diagnosis of diabetes have focused on plant flavonoids. This study was aimed to investigate the beneficial effects of flavonoids fraction of Mespilus germanica leaves (MGL) on MetS in ovariectomized (OVX) rats. Methods: Twenty-four adult female Wistar rats, weighing 200 to 250 g, were divided into 3 groups: Sham surgery, OVX + Salin, or OVX + Flavonoid. Three weeks after ovariectomy, animals displayed MetS criteria received flavonoid injection (10 mg/kg, intraperitoneally) for 21 days. Then the body weight, body mass index, waist circumference, visceral fat, fasting blood glucose, serum insulin, lipid profiles and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) were measured. Results: Treatment with flavonoids fraction of MGL significantly decreased serum level of insulin (P = 0.011), glucose (P = 0.024), $TNF-{\alpha}$ (P = 0.010), also MetS Z score (P = 0.020) and homeostasis model assessment of insulin resistance (P = 0.007). Lipid profiles and visceral fat showed insignificant reduction. Conclusions: Flavonoids of MGL attenuates some of the MetS components possibly via reduction in $TNF-{\alpha}$ inflammatory cytokine.

Correlation between Eum, Yang, Ki and Blood Metabolism and Obesity (음양기혈대사(陰陽氣血代謝)와 비만(肥滿)의 상관관계)

  • Shin, Soon Shik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This paper aims to present a model of obesity and leanness based on eum, yang, ki and blood metabolism of Korean medicine. I analyzed the theory of eum, yang, ki and blood metabolism, yang transforming ki and eum forming the body on Korean medicine, and compared them with energy homeostasis by anabolism and catabolism of modern medicine. In the eum and yang theory, the metabolic process of the human body is dominated by synergism and antagonism between eum force and yang force. When the balance of eum and yang collapses, all the pathological actions of the human body appear, and in the eum and yang metabolic process, an imbalance between yang transforming ki and eum forming the body occurs. The function of yang transforming ki is reduced to ki deficiency, and the function of eum forming the body is increased to blood excess. When blood excess and ki deficiency is given, energy intake increases, energy expenditure decreases, overweight and obesity occur. On the contrary, the function of yang transforming ki is increased to ki excess, and the function of eum forming the body is decreased to blood deficiency. When ki excess and blood deficiency is done, energy intake decreases and energy expenditure increases, the body becomes leanness. When the balance of eum, yang, ki and blood metabolism collapses and becomes blood excess and ki deficiency, overweight and obesity occur, and when ki excess and blood deficiency is done, the body becomes leanness. The energy homeostasis of the human body can be explained by eum, yang, ki and blood metabolism of Korean medicine and it contains the concept of anabolism and catabolism of modern medicine.

Inhibition of Osteoclast Differentiation and Promotion of Osteogenic Formation by Wolfiporia extensa Mycelium

  • Tae Hyun Son;Shin-Hye Kim;Hye-Lim Shin;Dongsoo Kim;Jin-Sung Huh;Rhim Ryoo;Yongseok Choi;Sik-Won Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1197-1205
    • /
    • 2023
  • Osteoporosis, Greek for "porous bone," is a bone disease characterized by a decrease in bone strength, microarchitectural changes in the bone tissues, and an increased risk of fracture. An imbalance of bone resorption and bone formation may lead to chronic metabolic diseases such as osteoporosis. Wolfiporia extensa, known as "Bokryung" in Korea, is a fungus belonging to the family Polyporaceae and has been used as a therapeutic food against various diseases. Medicinal mushrooms, mycelium and fungi, possess approximately 130 medicinal functions, including antitumor, immunomodulating, antibacterial, hepatoprotective, and antidiabetic effects, and are therefore used to improve human health. In this study, we used osteoclast and osteoblast cell cultures treated with Wolfiporia extensa mycelium water extract (WEMWE) and investigated the effect of the fungus on bone homeostasis. Subsequently, we assessed its capacity to modulate both osteoblast and osteoclast differentiation by performing osteogenic and anti-osteoclastogenic activity assays. We observed that WEMWE increased BMP-2-stimulated osteogenesis by inducing Smad-Runx2 signal pathway axis. In addition, we found that WEMWE decreased RANKL-induced osteoclastogenesis by blocking c-Fos/NFATc1 via the inhibition of ERK and JNK phosphorylation. Our results show that WEMWE can prevent and treat bone metabolic diseases, including osteoporosis, by a biphasic activity that sustains bone homeostasis. Therefore, we suggest that WEMWE can be used as a preventive and therapeutic drug.

Development of metabolic syndrome and its correlation with insulin resistance in adult patients with Turner syndrome (터너증후군을 가진 성인 환자에서 대사증후군의 발생과 인슐린저항성과의 관계)

  • Kim, Joo Hwa;Kang, Min Jae;Shin, Choong Ho;Yang, Sei Won
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.3
    • /
    • pp.370-375
    • /
    • 2009
  • Purpose : The risk of metabolic syndrome (MS) and cardiovascular disease in Turner syndrome (TS) patients is high. We analyzed metabolic factors in adults with TS and evaluated the metabolic risk of insulin resistance. Methods : Forty-three adults with TS were enrolled. The frequency of MS and the values of the metabolic factors were analyzed. Patients were divided into insulin resistant and non-resistant groups according to values of homeostasis model assessment of insulin resistance (HOMA-IR). The correlations of HOMA-IR with metabolic parameters were analyzed. Results : The frequency of MS was 7% and those of each metabolic parameter were as follows: insulin resistance, 16.3%; central obesity, 15.4%; hypertriglyceridemia, 2.3%; low HDL cholesterol, 9.3%; hypertension, 36.8%. The insulin-resistant group had significantly higher values of body mass index (BMI), waist circumference (WC), fasting plasma glucose (FPG), HOMA-IR, and systolic blood pressure (SBP) than the non-resistant group (P<0.05). HOMA-IR showed a significantly positive correlation with BMI, WC, FPG, and SBP and showed a negative correlation with HDL cholesterol. Conclusion : This study suggests that adults with TS have a high risk of metabolic syndrome, and insulin resistance is correlated with metabolic factors. Therefore, TS patients should have their metabolic parameters monitored regularly to minimize metabolic complications and prevent cardiovascular diseases.

Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice

  • Kim, Juyoung;Kim, Juhae;Kwon, Young Hye
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.386-392
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. MATERIALS/METHODS: Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. RESULTS: Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including $LXR{\alpha}$, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. CONCLUSIONS: Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.