DOI QR코드

DOI QR Code

Flavonoids Fraction of Mespilus Germanica Alleviates Insulin Resistance in Metabolic Syndrome Model of Ovariectomized Rats via Reduction in Tumor Necrosis Factor-α

  • Kouhestani, Somayeh (Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences) ;
  • Zare, Samad (Department of Biology, Faculty of Basic Sciences, Urmia University) ;
  • Babaei, Parvin (Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences)
  • Received : 2018.02.28
  • Accepted : 2018.08.29
  • Published : 2018.12.31

Abstract

Objectives: The rate of metabolic syndrome (MetS) in women diagnosed as they age is one of the main concerns of health cares. Recently new strategies used to prevent progressions of MetS toward the diagnosis of diabetes have focused on plant flavonoids. This study was aimed to investigate the beneficial effects of flavonoids fraction of Mespilus germanica leaves (MGL) on MetS in ovariectomized (OVX) rats. Methods: Twenty-four adult female Wistar rats, weighing 200 to 250 g, were divided into 3 groups: Sham surgery, OVX + Salin, or OVX + Flavonoid. Three weeks after ovariectomy, animals displayed MetS criteria received flavonoid injection (10 mg/kg, intraperitoneally) for 21 days. Then the body weight, body mass index, waist circumference, visceral fat, fasting blood glucose, serum insulin, lipid profiles and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) were measured. Results: Treatment with flavonoids fraction of MGL significantly decreased serum level of insulin (P = 0.011), glucose (P = 0.024), $TNF-{\alpha}$ (P = 0.010), also MetS Z score (P = 0.020) and homeostasis model assessment of insulin resistance (P = 0.007). Lipid profiles and visceral fat showed insignificant reduction. Conclusions: Flavonoids of MGL attenuates some of the MetS components possibly via reduction in $TNF-{\alpha}$ inflammatory cytokine.

Keywords

Acknowledgement

Supported by : Guilan University Medical Sciences

References

  1. Lau DCW. New insights in the prevention and early management of type 2 diabetes. Can J Diabetes 2011; 35: 239-41. https://doi.org/10.1016/S1499-2671(11)53002-3
  2. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014; 2014: 943162.
  3. Janssen I, Powell LH, Crawford S, Lasley B, Sutton-Tyrrell K. Menopause and the metabolic syndrome: the Study of Women's Health Across the Nation. Arch Intern Med 2008; 168: 1568-75. https://doi.org/10.1001/archinte.168.14.1568
  4. Arthur FK, Adu-Frimpong M, Osei-Yeboah J, Mensah FO, Owusu L. The prevalence of metabolic syndrome and its predominant components among pre-and postmenopausal Ghanaian women. BMC Res Notes 2013; 6: 446. https://doi.org/10.1186/1756-0500-6-446
  5. Tawfik SH, Mahmoud BF, Saad MI, Shehata M, Kamel MA, Helmy MH. Similar and additive effects of ovariectomy and diabetes on insulin resistance and lipid metabolism. Biochem Res Int 2015; 2015: 567945.
  6. Krogh-Madsen R, Plomgaard P, Moller K, Mittendorfer B, Pedersen BK. Influence of TNF-alpha and IL-6 infusions on insulin sensitivity and expression of IL-18 in humans. Am J Physiol Endocrinol Metab 2006; 291: E108-14. https://doi.org/10.1152/ajpendo.00471.2005
  7. Jiao K, Liu H, Chen J, Tian D, Hou J, Kaye AD. Roles of plasma interleukin-6 and tumor necrosis factor-alpha and FFA and TG in the development of insulin resistance induced by high-fat diet. Cytokine 2008; 42: 161-9. https://doi.org/10.1016/j.cyto.2007.12.002
  8. Luna B, Feinglos MN. Oral agents in the management of type 2 diabetes mellitus. Am Fam Physician 2001; 63: 1747-56.
  9. Prochazkova D, Bousova I, Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011; 82: 513-23. https://doi.org/10.1016/j.fitote.2011.01.018
  10. Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 2015; 11: 982-91. https://doi.org/10.7150/ijbs.12096
  11. Banjarnahor SDS, Artanti N. Antioxidant properties of flavonoids. Med J Indones 2014; 23: 239-44.
  12. Hoek-van den Hil EF, Keijer J, Bunschoten A, Vervoort JJ, Stankova B, Bekkenkamp M, et al. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice. PLoS One 2013; 8: e51588. https://doi.org/10.1371/journal.pone.0051588
  13. Hanhineva K, Torronen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkanen H, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11: 1365-402. https://doi.org/10.3390/ijms11041365
  14. Annadurai T, Muralidharan AR, Joseph T, Hsu MJ, Thomas PA, Geraldine P. Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamideinduced experimental diabetic rats. J Physiol Biochem 2012; 68: 307-18. https://doi.org/10.1007/s13105-011-0142-y
  15. Lopes Galeno DM, Carvalho RP, Boleti AP, Lima AS, Oliveira de Almeida PD, Pacheco CC, et al. Extract from Eugenia punicifolia is an antioxidant and inhibits enzymes related to metabolic syndrome. Appl Biochem Biotechnol 2014; 172: 311-24. https://doi.org/10.1007/s12010-013-0520-8
  16. Nabavi SF, Nabavi SM, Ebrahimzadeh MA, Asgarirad H. The antioxidant activity of wild medlar (Mespilus germanica L.) fruit, stem bark and leaf. Afr J Biotechnol 2011; 10: 283-9.
  17. Glew RH, Ayaz FA, Sanz C, Vanderjagt DJ. Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation. Food Chem 2003; 83: 363-9. https://doi.org/10.1016/S0308-8146(03)00097-9
  18. Ercisli S, Sengul M, Yildiz H, Sener D, Duralija B, Voca S, et al. Phytochemical and antioxidant characteristics of medlar fruits (Mespilus germanica L.). J Appl Bot Food Qual 2012; 85: 86-90.
  19. Sun Y, Yu Q, Shen Q, Bai W, Kang J. Black cohosh ameliorates metabolic disorders in female ovariectomized rats. Rejuvenation Res 2016; 19: 204-14. https://doi.org/10.1089/rej.2015.1724
  20. Prasannarong M, Saengsirisuwan V, Piyachaturawat P, Suksamrarn A. Improvements of insulin resistance in ovariectomized rats by a novel phytoestrogen from Curcuma comosa Roxb. BMC Complement Altern Med 2012; 12: 28.
  21. Babaei P, Shirkouhi SG, Hosseini R, Soltani Tehrani B. Vitamin D is associated with metabotropic but not neurotrophic effects of exercise in ovariectomized rats. Diabetol Metab Syndr 2017; 9: 91. https://doi.org/10.1186/s13098-017-0288-z
  22. Ramezani M, Darbandi N, Khodagholi F, Hashemi A. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer's disease. Neural Regen Res 2016; 11: 1976-80. https://doi.org/10.4103/1673-5374.197141
  23. Hoseini R, Damirchi A, Babaei P. Vitamin D increases $PPAR{\gamma}$ expression and promotes beneficial effects of physical activity in metabolic syndrome. Nutrition 2017; 36: 54-9. https://doi.org/10.1016/j.nut.2016.06.010
  24. Nounou HA, Deif MM, Shalaby MA. Effect of flaxseed supplementation and exercise training on lipid profile, oxidative stress and inflammation in rats with myocardial ischemia. Lipids Health Dis 2012; 11: 129. https://doi.org/10.1186/1476-511X-11-129
  25. Bateman LA, Slentz CA, Willis LH, Shields AT, Piner LW, Bales CW, et al. Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the Studies of a Targeted Risk Reduction Intervention Through Defined Exercise - STRRIDE-AT/RT). Am J Cardiol 2011; 108: 838-44. https://doi.org/10.1016/j.amjcard.2011.04.037
  26. Wegorzewska IN, Walters K, Weiser MJ, Cruthirds DF, Ewell E, Larco DO, et al. Postovariectomy weight gain in female rats is reversed by estrogen receptor alpha agonist, propylpyrazoletriol. Am J Obstet Gynecol 2008; 199: 67.e1-5. https://doi.org/10.1016/j.ajog.2007.11.054
  27. Yang L, Wang Z, Jiang L, Sun W, Fan Q, Liu T. Total flavonoids extracted from oxytropis falcata bunge improve insulin resistance through regulation on the IKKbeta/NFkappaB inflammatory pathway. Evid Based Complement Alternat Med 2017; 2017: 2405124.
  28. Li J, Gong F, Li F. Hypoglycemic and hypolipidemic effects of flavonoids from tatary buckwheat in type 2 diabetic rats. Biomedi Res 2016; 27: 132-7.
  29. Mahmoud MF, Hassan NA, El Bassossy HM, Fahmy A. Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: effect on low grade inflammation. PLoS One 2013; 8: e63784. https://doi.org/10.1371/journal.pone.0063784
  30. Palacz-Wrobel M, Borkowska P, Paul-Samojedny M, Kowalczyk M, Fila-Danilow A, Suchanek-Raif R, et al. Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-alpha) and interleukin-10 (IL-10) in RAW-264.7 macrophages. Biomed Pharmacother 2017; 93: 1205-12. https://doi.org/10.1016/j.biopha.2017.07.054
  31. Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep 2015; 20: 198-209. https://doi.org/10.1179/1351000214Y.0000000117
  32. Sabio G, Davis RJ. TNF and MAP kinase signalling pathways. Semin Immunol 2014; 26: 237-45. https://doi.org/10.1016/j.smim.2014.02.009
  33. Ye J. Regulation of PPARgamma function by TNF-alpha. Biochem Biophys Res Commun 2008; 374: 405-8. https://doi.org/10.1016/j.bbrc.2008.07.068
  34. Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 2007; 48: 751-62. https://doi.org/10.1194/jlr.R600021-JLR200
  35. Joo JK, Lee KS. Pharmacotherapy for obesity. J Menopausal Med 2014; 20: 90-6. https://doi.org/10.6118/jmm.2014.20.3.90

Cited by

  1. Effect of Aglycon and Glycoside Flavonoid-Enriched Extracts Obtained from Buxus sempervirens L. on Glucose and Lipid Metabolism in Diabetic Rats vol.18, pp.None, 2020, https://doi.org/10.2174/1871525718666200109102241