DOI QR코드

DOI QR Code

Inhibition of Osteoclast Differentiation and Promotion of Osteogenic Formation by Wolfiporia extensa Mycelium

  • Tae Hyun Son (School of Life Sciences and Biotechnology, Korea University) ;
  • Shin-Hye Kim (Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS)) ;
  • Hye-Lim Shin (Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS)) ;
  • Dongsoo Kim (Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS)) ;
  • Jin-Sung Huh (Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS)) ;
  • Rhim Ryoo (Forest Microbiology Division, Department of Forest Bio-Resources, NIFoS) ;
  • Yongseok Choi (School of Life Sciences and Biotechnology, Korea University) ;
  • Sik-Won Choi (Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS))
  • Received : 2022.12.12
  • Accepted : 2023.05.30
  • Published : 2023.09.28

Abstract

Osteoporosis, Greek for "porous bone," is a bone disease characterized by a decrease in bone strength, microarchitectural changes in the bone tissues, and an increased risk of fracture. An imbalance of bone resorption and bone formation may lead to chronic metabolic diseases such as osteoporosis. Wolfiporia extensa, known as "Bokryung" in Korea, is a fungus belonging to the family Polyporaceae and has been used as a therapeutic food against various diseases. Medicinal mushrooms, mycelium and fungi, possess approximately 130 medicinal functions, including antitumor, immunomodulating, antibacterial, hepatoprotective, and antidiabetic effects, and are therefore used to improve human health. In this study, we used osteoclast and osteoblast cell cultures treated with Wolfiporia extensa mycelium water extract (WEMWE) and investigated the effect of the fungus on bone homeostasis. Subsequently, we assessed its capacity to modulate both osteoblast and osteoclast differentiation by performing osteogenic and anti-osteoclastogenic activity assays. We observed that WEMWE increased BMP-2-stimulated osteogenesis by inducing Smad-Runx2 signal pathway axis. In addition, we found that WEMWE decreased RANKL-induced osteoclastogenesis by blocking c-Fos/NFATc1 via the inhibition of ERK and JNK phosphorylation. Our results show that WEMWE can prevent and treat bone metabolic diseases, including osteoporosis, by a biphasic activity that sustains bone homeostasis. Therefore, we suggest that WEMWE can be used as a preventive and therapeutic drug.

Keywords

Acknowledgement

This study was carried out with the support of Forest Bioresources Department, National Institute of Forest Science (project no. FP0800-2020-02-2022).

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. 2001. Osteoporosis prevention, diagnosis, and therapy. JAMA 285: 785-795.  https://doi.org/10.1001/jama.285.6.785
  2. Karsenty G, Wagner EF. 2002. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2: 389-406.  https://doi.org/10.1016/S1534-5807(02)00157-0
  3. Komori T. 2006. Regulation of osteoblast differentiation by transcription factors. J. Cell. Biochem. 99: 1233-1239.  https://doi.org/10.1002/jcb.20958
  4. Ponzetti M, Rucci N. 2021. Osteoblast differentiation and signaling: established concepts and emerging topics. Int. J. Mol. Sci. 22: 6651. 
  5. Almalki SG, Agrawal DK. 2016. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92: 41-51.  https://doi.org/10.1016/j.diff.2016.02.005
  6. Herpin A, Cunningham C. 2007. Cross-talk between the bone morphogenetic protein pathway and other major signaling pathways results in tightly regulated cell-specific outcomes. FEBS J. 274: 2977-2985.  https://doi.org/10.1111/j.1742-4658.2007.05840.x
  7. Samee N, Geoffroy V, Marty C, Schiltz C, Vieux-Rochas M, Levi G, et al. 2008. Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling. Am. J. Pathol. 173: 773-780.  https://doi.org/10.2353/ajpath.2008.080243
  8. Capulli M, Paone R, Rucci N. 2014. Osteoblast and osteocyte: games without frontiers. Arch. Biochem. Biophys. 561: 3-12.  https://doi.org/10.1016/j.abb.2014.05.003
  9. Kim WJ, Shin HL, Kim BS, Kim HJ, Ryoo HM. 2020. RUNX2-modifying enzymes: therapeutic targets for bone diseases. Exp. Mol. Med. 52: 1178-1184.  https://doi.org/10.1038/s12276-020-0471-4
  10. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. 2018. Osteoblast-osteoclast interactions. Connect. Tissue Res. 59: 99-107.  https://doi.org/10.1080/03008207.2017.1290085
  11. Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, et al. 1990. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. USA 87: 7260-7264.  https://doi.org/10.1073/pnas.87.18.7260
  12. Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM, et al. 1988. Osteoblastic cells are involved in osteoclast formation. Endocrinology 123: 2600-2602.  https://doi.org/10.1210/endo-123-5-2600
  13. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, et al. 1990. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345: 442-444.  https://doi.org/10.1038/345442a0
  14. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA95: 3597-3602.  https://doi.org/10.1073/pnas.95.7.3597
  15. Lee ZH, Kim HH. 2003. Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem. Biophys. Res. Commun. 305: 211-214.  https://doi.org/10.1016/S0006-291X(03)00695-8
  16. Feng X. 2005. RANKing intracellular signaling in osteoclasts. IUBMB Life 57: 389-395.  https://doi.org/10.1080/15216540500137669
  17. Takayanagi H. 2007. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7: 292-304.  https://doi.org/10.1038/nri2062
  18. Takayanagi H. 2005. Inflammatory bone destruction and osteoimmunology. J. Periodont. Res. 40: 287-293.  https://doi.org/10.1111/j.1600-0765.2005.00814.x
  19. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, et al. 1994. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266: 443-448.  https://doi.org/10.1126/science.7939685
  20. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3: 889-901.  https://doi.org/10.1016/S1534-5807(02)00369-6
  21. Rodan GA, Martin TJ. 2000. Therapeutic approaches to bone diseases. Science 289: 1508-1514.  https://doi.org/10.1126/science.289.5484.1508
  22. Teitelbaum SL. 2000. Bone resorption by osteoclasts. Science 289: 1504-1508.  https://doi.org/10.1126/science.289.5484.1504
  23. Skjodt MK, Frost M, Abrahamsen B. 2019. Side effects of drugs for osteoporosis and metastatic bone disease. Br. J. Clin. Pharmacol. 85: 1063-1071.  https://doi.org/10.1111/bcp.13759
  24. Stafford RS, Drieling RL, Hersh AL. 2004. National trends in osteoporosis visits and osteoporosis treatment, 1988-2003. Arch. Intern. Med. 164: 1525-1530.  https://doi.org/10.1001/archinte.164.14.1525
  25. Watson J, Wise L, Green J. 2007. Prescribing of hormone therapy for menopause, tibolone, and bisphosphonates in women in the UK between 1991 and 2005. Eur. J. Clin. Pharmacol. 63: 843-849.  https://doi.org/10.1007/s00228-007-0320-6
  26. Filleul O, Crompot E, Saussez S. 2010. Bisphosphonate-induced osteonecrosis of the jaw: a review of 2,400 patient cases. J. Cancer Res. Clin. Oncol. 136: 1117-1124.  https://doi.org/10.1007/s00432-010-0907-7
  27. Yuan H, Ma Q, Ye L, Piao G. 2016. The traditional medicine and modern medicine from natural products. Molecules 21: 559. 
  28. Posadzki P, Watson LK, Ernst E. 2013. Adverse effects of herbal medicines: an overview of systematic reviews. Clin. Med. (Lond.) 13: 7-12.  https://doi.org/10.7861/clinmedicine.13-1-7
  29. Fijalkowska A, Muszynska B, Sulkowska-Ziaja K, Kala K, Pawlik A, Stefaniuk D, et al. 2020. Medicinal potential of mycelium and fruiting bodies of an arboreal mushroom Fomitopsis officinalis in therapy of lifestyle diseases. Sci. Rep. 10: 20081. 
  30. Berger RG, Bordewick S, Krahe NK, Ersoy F. 2022. Mycelium vs. fruiting bodies of edible fungi-a comparison of metabolites. Microorganisms 10: 1379. 
  31. Wasser SP. 2014. Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed J. 37: 345-356.  https://doi.org/10.4103/2319-4170.138318
  32. Choi S-H, Lee S-J, Jo W-S, Choi J-W, Park S-C. 2016. Comparison of ingredients and antioxidant activity of the domestic regional Wolfiporia extensa. Korean J. Mycol. 44: 23-30.  https://doi.org/10.4489/KJM.2016.44.1.23
  33. Cuella MJ, Giner RM, Recio MC, Just MJ, Manez S, Rios JL. 1996. Two fungal lanostane derivatives as phospholipase A2 inhibitors. J. Nat. Prod. 59: 977-979.  https://doi.org/10.1021/np9604339
  34. Wu Y, Zhu W, Wei W, Zhao X, Wang Q, Zeng W, et al. 2016. De novo assembly and transcriptome analysis of sclerotial development in Wolfiporia cocos. Gene 588: 149-155.  https://doi.org/10.1016/j.gene.2016.05.020
  35. Esteban CI. 2009. [Medicinal interest of Poria cocos (= Wolfiporia extensa)]. Rev. Iberoam. Micol. 26: 103-107.  https://doi.org/10.1016/S1130-1406(09)70019-1
  36. Cheng S, Eliaz I, Lin J, Thyagarajan-Sahu A, Sliva D. 2013. Triterpenes from Poria cocos suppress growth and invasiveness of pancreatic cancer cells through the downregulation of MMP-7. Int. J. Oncol. 42: 1869-1874.  https://doi.org/10.3892/ijo.2013.1902
  37. Jiang Y, Fan L. 2020. Evaluation of anticancer activities of Poria cocos ethanol extract in breast cancer: in vivo and in vitro, identification and mechanism. J. Ethnopharmacol. 257: 112851. 
  38. Hamuro J, Yamashita Y, Ohsaka Y, Maeda YY, Chihara G. 1971. Carboxymethylpachymaran, a new water soluble polysaccharide with marked antitumour activity. Nature 233: 486-488.  https://doi.org/10.1038/233486a0
  39. Nukaya H, Yamashiro H, Fukazawa H, Ishida H, Tsuji K. 1996. Isolation of inhibitors of TPA-induced mouse ear edema from Hoelen, Poria cocos. Chem. Pharm. Bull. (Tokyo) 44: 847-849.  https://doi.org/10.1248/cpb.44.847
  40. Hwang YH, Jang SA, Lee A, Kim T, Ha H. 2020. Poria cocos ameliorates bone loss in ovariectomized mice and inhibits osteoclastogenesis in vitro. Nutrients 12: 1383. 
  41. Kim SH, Kim KJ, Kang HJ, Son YJ, Choi SW, Lee MJ. 2018. The dual role of oat bran water extract in bone homeostasis through the regulation of osteoclastogenesis and osteoblast differentiation. Molecules 23: 3119. 
  42. Rozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386.  https://doi.org/10.1385/1-59259-192-2:365
  43. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) method. Methods 25: 402-408.  https://doi.org/10.1006/meth.2001.1262
  44. Caetano-Lopes J, Canhao H, Fonseca JE. 2007. Osteoblasts and bone formation. Acta Reumatol. Port. 32: 103-110. 
  45. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, et al. 1994. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol. 127: 1755-1766.  https://doi.org/10.1083/jcb.127.6.1755
  46. Javed A, Bae JS, Afzal F, Gutierrez S, Pratap J, Zaidi SK, et al. 2008. Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J. Biol. Chem. 283: 8412-8422.  https://doi.org/10.1074/jbc.M705578200
  47. Zainal Ariffin SH, Lim KW, Megat Abdul Wahab R, Zainal Ariffin Z, Rus Din RD, Shahidan MA. 2022. Gene expression profiles for in vitro human stem cell differentiation into osteoblasts and osteoclasts: a systematic review. PeerJ. 10: e14174. 
  48. Asagiri M, Takayanagi H. 2007. The molecular understanding of osteoclast differentiation. Bone 40: 251-264.  https://doi.org/10.1016/j.bone.2006.09.023
  49. Ishida N, Hayashi K, Hoshijima M, Ogawa T, Koga S, Miyatake Y, et al. 2002. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J. Biol. Chem. 277: 41147-41156.  https://doi.org/10.1074/jbc.M205063200
  50. Boyle WJ, Simonet WS, Lacey DL. 2003. Osteoclast differentiation and activation. Nature 423: 337-342.  https://doi.org/10.1038/nature01658
  51. Kim SH, Yuk HJ, Ryu HW, Oh SR, Song DY, Lee KS, et al. 2019. Biofunctional soyasaponin Bb in peanut (Arachis hypogaea L.) sprouts enhances bone morphogenetic protein-2-dependent osteogenic differentiation via activation of runt-related transcription factor 2 in C2C12 cells. Phytother. Res. 33: 1490-1500.  https://doi.org/10.1002/ptr.6341
  52. Gersbach CA, Byers BA, Pavlath GK, Garcia AJ. 2004. Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype. Exp. Cell Res. 300: 406-417.  https://doi.org/10.1016/j.yexcr.2004.07.031
  53. Chen D, Zhao M, Mundy GR. 2004. Bone morphogenetic proteins. Growth Fact. 22: 233-241.  https://doi.org/10.1080/08977190412331279890
  54. Feng XH, Derynck R. 2005. Specificity and versatility in TGF-beta signaling through Smads. Annu. Rev. Cell Dev. Biol. 21: 659-693. https://doi.org/10.1146/annurev.cellbio.21.022404.142018