• Title/Summary/Keyword: metabolic homeostasis

Search Result 177, Processing Time 0.024 seconds

Subtle inflammation: a possible mechanism of future cardiovascular risk in obese children

  • Sontichai, Watchareewan;Dejkhamron, Prapai;Pothacharoen, Peraphan;Kongtaweelert, Prachya;Unachak, Kevalee;Ukarapol, Nuthapong
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.11
    • /
    • pp.359-364
    • /
    • 2017
  • Purpose: The risk of cardiovascular disease (CVD) has been shown to be associated with systemic inflammation in obese adults with metabolic syndrome (MetS). The aims of this study were to evaluate the prevalence of MetS and its relation to inflammatory markers in obese Thai children. Methods: A cross-sectional study was conducted. Children with history of endogenous obesity, chronic diseases, drug ingestion, and any acute illness within 2 weeks prior to enrollment were excluded. Their fasting blood glucose (FBG) levels, oral glucose tolerance tests, insulin, lipid profiles, and selected inflammatory markers, including interleukin-6, tumor necrosis factor-alpha, and high-sensitivity C-reactive protein (hs-CRP) levels, were tested. Results: In this study, 58 obese Thai children (female, 20; male, 38) with a mean body mass index z score of $5.1{\pm}2.2$ were enrolled. The prevalence of MetS and prediabetes was 31% and 17.2%, respectively. None of the children had diabetes. FBG levels, 2-hour glucose levels, and lipid profiles were not statistically different between those with and without MetS. However, obese children with MetS had higher insulin levels and homeostasis model assessment of insulin resistance values. Elevated hs-CRP levels were found in 69% of the cases, although it was not statistically different between the 2 groups. Conclusion: We described a substantial prevalence of MetS in Thai obese children. Regardless of MetS status, two-thirds of the obese children had elevated hs-CRP level, indicating subtle ongoing inflammatory process. This chronic inflammation feasibly predisposes them to CVD in the future, even in children without MetS.

Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle

  • Heo, Jun-Won;No, Mi-Hyun;Park, Dong-Ho;Kang, Ju-Hee;Seo, Dae Yun;Han, Jin;Neufer, P. Darrell;Kwak, Hyo-Bum
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.567-577
    • /
    • 2017
  • Obesity is known to induce inhibition of glucose uptake, reduction of lipid metabolism, and progressive loss of skeletal muscle function, which are all associated with mitochondrial dysfunction in skeletal muscle. Mitochondria are dynamic organelles that regulate cellular metabolism and bioenergetics, including ATP production via oxidative phosphorylation. Due to these critical roles of mitochondria, mitochondrial dysfunction results in various diseases such as obesity and type 2 diabetes. Obesity is associated with impairment of mitochondrial function (e.g., decrease in $O_2$ respiration and increase in oxidative stress) in skeletal muscle. The balance between mitochondrial fusion and fission is critical to maintain mitochondrial homeostasis in skeletal muscle. Obesity impairs mitochondrial dynamics, leading to an unbalance between fusion and fission by favorably shifting fission or reducing fusion proteins. Mitophagy is the catabolic process of damaged or unnecessary mitochondria. Obesity reduces mitochondrial biogenesis in skeletal muscle and increases accumulation of dysfunctional cellular organelles, suggesting that mitophagy does not work properly in obesity. Mitochondrial dysfunction and oxidative stress are reported to trigger apoptosis, and mitochondrial apoptosis is induced by obesity in skeletal muscle. It is well known that exercise is the most effective intervention to protect against obesity. Although the cellular and molecular mechanisms by which exercise protects against obesity-induced mitochondrial dysfunction in skeletal muscle are not clearly elucidated, exercise training attenuates mitochondrial dysfunction, allows mitochondria to maintain the balance between mitochondrial dynamics and mitophagy, and reduces apoptotic signaling in obese skeletal muscle.

Comparative Analysis of 3 Experimental Mouse Model for Blood Hematology and Chemistry

  • Kong, Dae Young;Park, Jung Hwan;Lee, Kyo Won;Park, Ho;Cho, Jung Ah
    • Biomedical Science Letters
    • /
    • v.22 no.3
    • /
    • pp.75-82
    • /
    • 2016
  • The immune system and neuroendocrine systems are the two key components that maintain bodily homeostasis. Peripheral blood specimens can indicate abnormalities in a body, which often cause various threats to human health, including devastating autoimmune or metabolic diseases. To develop a treatment regimen for such diseases, experimental animal models are indispensable to researchers in academic fields. In this study, we examined the peripheral blood of 3 representative mouse strains (ICR, Balb/c, and C57Bl/6), which are widely used, to investigate whether there is a difference in reference range according to animal model. We performed hematological and chemistry analysis on individuals of both genders. The results of hematology analysis showed that the number of most types of blood cells was lower in ICR than in the other two strains. The results of chemical analysis revealed no specific pattern, but different patterns according to the individual indicator. Although the distinction between ICR and B6 was prominent, differences between Balb/c and B6 were also observed for several indicators. For some indicators, totally different patterns existed between females and males. Conclusively, this study provides the information that 3 experimentally representative mouse models have their own basal levels of blood components, suggesting the importance of a careful choice of a proper mouse model in research into immune or metabolic diseases, to exclude any biases.

Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes

  • Song, Yae Chan;Lee, Seung Eon;Jin, Young;Park, Hyun Woo;Chun, Kyung-Hee;Lee, Han-Woong
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.763-773
    • /
    • 2020
  • Recently, tumor microenvironment (TME) and its stromal constituents have provided profound insights into understanding alterations in tumor behavior. After each identification regarding the unique roles of TME compartments, non-malignant stromal cells are found to provide a sufficient tumorigenic niche for cancer cells. Of these TME constituents, adipocytes represent a dynamic population mediating endocrine effects to facilitate the crosstalk between cancer cells and distant organs, as well as the interplay with nearby tumor cells. To date, the prevalence of obesity has emphasized the significance of metabolic homeostasis along with adipose tissue (AT) inflammation, cancer incidence, and multiple pathological disorders. In this review, we summarized distinct characteristics of hypertrophic adipocytes and cancer to highlight the importance of an individual's metabolic health during cancer therapy. As AT undergoes inflammatory alterations inducing tissue remodeling, immune cell infiltration, and vascularization, these features directly influence the TME by favoring tumor progression. A comparison between inflammatory AT and progressing cancer could potentially provide crucial insights into delineating the complex communication network between uncontrolled hyperplastic tumors and their microenvironmental components. In turn, the comparison will unravel the underlying properties of dynamic tumor behavior, advocating possible therapeutic targets within TME constituents.

Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota

  • Oh, Ju Kyoung;Vasquez, Robie;Kim, Sang Hoon;Hwang, In-Chan;Song, Ji Hoon;Park, Jae Hong;Kim, In Ho;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1142-1158
    • /
    • 2021
  • Short-chain fatty acids (SCFAs) are metabolic products produced during the microbial fermentation of non-digestible fibers and play an important role in metabolic homeostasis and overall gut health. In this study, we investigated the effects of supplementation with multispecies probiotics (MSPs) containing Bacillus amyloliquefaciens, Limosilactobacillus reuteri, and Levilactobacillus brevis on the gut microbiota, and fecal SCFAs and lactate levels of weaned pigs. A total of 38 pigs weaned at 4 weeks of age were fed either a basal diet or a diet supplemented with MSPs for 6 weeks. MSP administration significantly increased the fecal concentrations of lactate (2.3-fold; p < 0.01), acetate (1.8-fold; p < 0.05), and formate (1.4-fold; p < 0.05). Moreover, MSP supplementation altered the gut microbiota of the pigs by significantly increasing the population of potentially beneficial bacteria such as Olsenella, Catonella, Catenibacterium, Acidaminococcus, and Ruminococcaceae. MSP supplementation also decreased the abundance of pathogenic bacteria such as Escherichia and Chlamydia. The modulation of the gut microbiota was observed to be strongly correlated with the changes in fecal SCFAs and lactate levels. Furthermore, we found changes in the functional pathways present within the gut, which supports our findings that MSP modulates the gut microbiota and SCFAs levels in pigs. The results support the potential use of MSPs to improve the gut health of animals by modulating SCFAs production.

Association Between Trp64arg Polymorphism of the β3 adrenoreceptor Gene and Female Sex in Obese Turkish Children and Adolescents

  • Yilmaz, Resul;Ates, Omer;Gul, Ali;Kasap, Tuba;Ozer, Samet;Ensari, Emel
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.5
    • /
    • pp.460-469
    • /
    • 2019
  • Purpose: The ${\beta}3-adrenergic$ receptor (ADRB3) is expressed in visceral adipose tissue and has been speculated to contribute to lipolysis, energy metabolism, and regulation of the metabolic rate. In this study, we aimed to investigate the association of polymorphism of the ADRB3 gene with the sex of children with obesity and related pathologies. Methods: ADRB3 gene trp64arg genotyping was conducted in 441 children aged 6-18 years. Among these subjects, 264 were obese (103 boys; 161 girls) and 179 were of normal weight (81 boys; 98 girls). In the obese group, fasting lipids, glucose and insulin levels, and blood pressure were measured. Metabolic syndrome (MS) was defined according to the modified World Health Organization criteria adapted for children. Results: The frequency of trp64arg genotype was similar in obese and normal weight children. In obese children, serum lipid, glucose, and insulin levels; homeostasis model assessment of insulin resistance (HOMA-IR) scores; and MS were not different between arg allele carriers (trp64arg) and noncarriers (trp64trp). In 264 obese children, genetic analysis results revealed that the arg allele carriers were significantly higher in girls than in boys (p=0.001). In the normal weight group, no statistically significant difference was found between genotypes of boys and girls (p=0.771). Conclusion: Trp64arg polymorphism of the ADRB3 gene was not associated with obesity and MS in Turkish children and adolescents. Although no relationships were observed between the genotypes and lipids, glucose/insulin levels, or HOMA-IR, the presence of trp64arg variant was frequent in obese girls, which can lead to weight gain as well as difficulty in losing weight in women.

A systematic review of the biological mechanisms linking physical activity and breast cancer

  • Hong, Bok Sil;Lee, Kang Pa
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.25-31
    • /
    • 2020
  • [Purpose] Epidemiological evidence has shown that leisure-time physical activity and structured exercise before and after breast cancer diagnosis contribute to reducing the risk of breast cancer recurrence and mortality. Thus, in this review, we aimed to summarize the physical activity-dependent regulation of systemic factors to understand the biological and molecular mechanisms involved in the initiation, progression, and survival of breast cancer. [Methods] We systematically reviewed the studies on 1) the relationship between physical activity and the risk of breast cancer, and 2) various systemic factors induced by physical activity and exercise that are potentially linked to breast cancer outcomes. To perform this literature review, PubMed database was searched using the terms "Physical activity OR exercise" and "breast cancer", until August 5th, 2020; then, we reviewed those articles related to biological mechanisms after examining the resulting search list. [Results] There is strong evidence that physical activity reduces the risk of breast cancer, and the protective effect of physical activity on breast cancer has been achieved by long-term regulation of various circulatory factors, such as sex hormones, metabolic hormones, inflammatory factors, adipokines, and myokines. In addition, physical activity substantially alters wholebody homeostasis by affecting numerous other factors, including plasma metabolites, reactive oxygen species, and microRNAs as well as exosomes and gut microbiota profile, and thereby every cell and organ in the whole body might be ultimately affected by the biological perturbation induced by physical activity and exercise. [Conclusion] The understanding of integrative mechanisms will enhance how physical activity can ultimately influence the risk and prognosis of various cancers, including breast cancer. Furthermore, physical activity could be considered an efficacious non-pharmacological therapy, and the promotion of physical activity is probably an effective strategy in primary cancer prevention.

Association between Genetic Polymorphism of Peroxisome Proliferator-Activated Receptor Alpha Leu162Val and Metabolioc Syndrome in Korean (한국인에서 peroxisome proliferator-activated receptor alpha Leu162Val 유전자 다형성과 대사증후군간의 관련성)

  • Shin Soung-Cheal;Song Hye-Soon;Hong Young-Seoub;Kwak Jong-Young;Yoo Byung-Chul;Lee Yong-Hwan
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.199-205
    • /
    • 2006
  • Peroxisome proliferator activated receptor (PPAR)-$\alpha$ of three PPAR subtypes ($-\alpha,\;-\beta/-\gamma,\;-\delta$), which are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors, plays a key role in lipoprotein and glucose homeostasis. A variation in the PPAR-a gene expression has been suggested to influence the development of metabolic syndrome through alterations in lipid concentrations. The aim of our study was to investigate the association between the PPAR-a and metabolic syndrome among South Korean. A total of 542 health screen examinees were enrolled in this study who were examined in Kosin University Gospel Hospital from December, 2004 to July, 2005. The height, weight, waist circumference, and systolic and diastolic blood pressure of the subjects were examined and fasting blood glucose, total cholesterol, HDL cholesterol, LDL cholesterol, triglyceride were measured by-sampling in venous blood. The metabolic syndrome was defined as the presence of three or more of the following : waist circumference men ${\geq}90cm$, women ${\geq}80cm$, blood pressure ${\geq}130/85mmHg$, fasting glucose ${\geq}110mg/dL$, HDL cholesterol men <40 mg/dL, women <50 mg/dL, triglyceride ${\geq}150mg/dL$. The blood pressure, fasting glucose, HDL cholesterol, triglyceride were evaluated by using the criteria of NECP ATP III and waist circumference was assessed by using the criteria of WHO Asia-Western Pacific. And the author compared the frequency of the PPAR-$\alpha$ mutation of L162V ($C{\rightarrow}G$ variant in exon 5) in a sample of 542 subjects with and without the metabolic syndrome by polymerase chain reaction allele-specific oligonucleotide (PCR-ASO) method. One (0.2%) hetero-isotype among high risk of metabolic syndrome was identified. The values of waist circumference, body mass index and low density lipoprotein cholesterol of the mutant were 100 cm, 28.6 $kg/m^2$ and 120 mg/dL, respectively. Although the author failed to see significant association between the presence of the PPAR-$\alpha$ L162V polymorphism and metabolic syndrome, one PPAR-$\alpha$ L162V polymorphism in metabolic syndrome patients was found.

Ceramide and Sphingosine 1-Phosphate in Liver Diseases

  • Park, Woo-Jae;Song, Jae-Hwi;Kim, Goon-Tae;Park, Tae-Sik
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.419-430
    • /
    • 2020
  • The liver is an important organ in the regulation of glucose and lipid metabolism. It is responsible for systemic energy homeostasis. When energy need exceeds the storage capacity in the liver, fatty acids are shunted into nonoxidative sphingolipid biosynthesis, which increases the level of cellular ceramides. Accumulation of ceramides alters substrate utilization from glucose to lipids, activates triglyceride storage, and results in the development of both insulin resistance and hepatosteatosis, increasing the likelihood of major metabolic diseases. Another sphingolipid metabolite, sphingosine 1-phosphate (S1P) is a bioactive signaling molecule that acts via S1P-specific G protein coupled receptors. It regulates many cellular and physiological events. Since an increase in plasma S1P is associated with obesity, it seems reasonable that recent studies have provided evidence that S1P is linked to lipid pathophysiology, including hepatosteatosis and fibrosis. Herein, we review recent findings on ceramides and S1P in obesity-mediated liver diseases and the therapeutic potential of these sphingolipid metabolites.

Pexophagy: Molecular Mechanisms and Implications for Health and Diseases

  • Cho, Dong-Hyung;Kim, Yi Sak;Jo, Doo Sin;Choe, Seong-Kyu;Jo, Eun-Kyeong
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • Autophagy is an intracellular degradation pathway for large protein aggregates and damaged organelles. Recent studies have indicated that autophagy targets cargoes through a selective degradation pathway called selective autophagy. Peroxisomes are dynamic organelles that are crucial for health and development. Pexophagy is selective autophagy that targets peroxisomes and is essential for the maintenance of homeostasis of peroxisomes, which is necessary in the prevention of various peroxisome-related disorders. However, the mechanisms by which pexophagy is regulated and the key players that induce and modulate pexophagy are largely unknown. In this review, we focus on our current understanding of how pexophagy is induced and regulated, and the selective adaptors involved in mediating pexophagy. Furthermore, we discuss current findings on the roles of pexophagy in physiological and pathological responses, which provide insight into the clinical relevance of pexophagy regulation. Understanding how pexophagy interacts with various biological functions will provide fundamental insights into the function of pexophagy and facilitate the development of novel therapeutics against peroxisomal dysfunction-related diseases.