• Title/Summary/Keyword: metabolic flux analysis,\

Search Result 64, Processing Time 0.026 seconds

Metabolic Flux Distribution in a Metabolically Engineered Escherichia coli Strain Producing Succinic Acid

  • Hong, Soon-Ho;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.496-501
    • /
    • 2000
  • Escherichia cole NZN111, which is known as a pfl ldhA double mutant strin, was metabolically engineered to produce succinic acid by overexpressing malic enzyme into the E. coli controlled by a trc promoter. Fermentation studies were carried out in a LB medium by first growing cells aerobically to an $OD_{600}$ of 5. At this point, 0.01 mM IPTG was added to induce the overexpression of malic enzyme and the agitation speed was gradually lowered. When the culture $OD_{600}$ reached 11, a complete anaerobic condition was achieved by flushing with a $CO_3-H_2$ gas mixture. When NZN111(pTrcML) was cultured at $37^{\circ}C$, the final succinic acid concentration of 2.8 g/l could be obtained after 30 h of anaerobic cultivation. The fermentation results were analyzed by the calculation of metabolic fluxes. Metaolic flux analysis showed that about 85% of phosphoenolpyruvate (PEP) was converted to pyruvate, and further converted to malic acid by malic enzyme.

  • PDF

Mapping of Carbon Flow Distribution in the Central Metabolic Pathways of Clostridium cellulolyticum: Direct Comparison of Bacterial Metabolism with a Soluble versus an Insoluble Carbon Source

  • DESVAUX, MICKAEL,
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1200-1210
    • /
    • 2004
  • Metabolic flux analysis was established by adapting previous stoichiometric model developed during growth with cellulose to cell grown with cellobiose for further direct comparison of the bacterial metabolism. In carbon limitation with cellobiose, a shift from acetate-ethanol fermentation to ethanol-lactate fermentation is observed and the pyruvate overflow is much higher than with cellulose. In nitrogen limitation with cellobiose, the cellodextrin and exopolysaccharide overflows are much higher than on cellulose. In carbon and nitrogen saturation with cellobiose, the cellodextrin, exopolysaccharide, and free amino acids overflows reach the highest levels observed but all remain limited on cellulose. By completely shunting the cellulosome, the use of cellobiose allows to reach much higher carbon consumption rates which, in return, highlights the metabolic limitation of C. cellulolyticum. Therefore, the physical nature of the carbon source has a profound impact on the metabolism of C. cellulolyticum and most probably of other cellulolytic bacteria. For cellulolytic bacteria, the use of soluble carbon substrate must carefully be taken into consideration for the interpretation of results. Direct comparison of metabolic flux analysis from cellobiose and cellulose revealed the importance of cellulosome, phosphoglucomutase and pyruvate-ferredoxin oxidoreductase in the distribution of carbon flow in the central metabolism. In the light of these findings, future directions for improvement of cellulose catabolism by this bacterium are discussed.

Roles of Glucose and Acetate as Carbon Sources in L-Histidine Production with Brevibacterium flavum FERM1564 Revealed by Metabolic Flux Analysis

  • Shioya, Suteaki;Shimizu, Hiroshi;Shimizu, Nobuyuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.171-177
    • /
    • 2002
  • The metabolic flux pattern for L-histidine production was analyzed when glucose and/or acetate were used as carbon sources. Total L-histidine production was enhanced when mixed substrate (glucose and acetate) was used, compared wish that when either glucose or acetate was used as the sole carbon source. Theoretical maximum carbon fluxes through the main pathways for L-histldine production, cell growth, and ATP consumption for cell maintenance were obtained by the linear programming (LP) method. By comparison of the theoretical maximum carbon fluxes tilth actual ones, it was found that a large amount of glucose was actually used for maintenance of cell viability. On the other hand, acetate was used for cell growth. After depletion of acetate in the mixed substrate culture, the flux for glucose to L-histldine synthesis was markedly enhanced. A strategy for effective L-histidine production using both carbon sources was proposed.

Flux Regulation Patterns and Energy Audit of E. coli B/r and K-12

  • Lee, Jin-Won;Goel, Akshay;Ataai, Mohammad-M.;Domach, Michael-M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.258-267
    • /
    • 2002
  • A flux determination methodology has been built which enables to develop constrained stoichiometric relationships and metabolic balances. The analysis differs from those developed for anaerobic growth conditions in that cell mass formation is a significant sink for carbon. When combined with experimental measurements, a determined system of equations results yielded tricarboxylic acid (TCA) cycle and glycolytic fluxes. The methodology was implemented to determine the fluxes of E. coli B/r and K12, and it was found that as the growth rate in a glucose minimal medium increased, the cells became increasing glycolytic and the TCA fluxes either leveled off or declined. The pattern identified for the TCA fluxes corresponded to ${\alpha}$-ketoglutarate dehydrogenase's induction-repression pattern, thereby suggesting that the induction-repression of the enzyme could result in significant flux changes. When the minimum flux solution was contrasted to the glycolytic and TCA fluxes determined, two observations were made. First, the minimum flux could provide the cell's biosynthetic ATP requirements. Second, at a high growth rate in a glucose medium, the excess glycolytic flux exceeded that of the TCA cycle, which appeared to more closely match the biosynthetic needs.

Microbial Biotechnology Powered by Genomics, Proteomics, Metabolomics and Bioinformatics

  • Lee, Sang-Yup
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.13-16
    • /
    • 2000
  • Microorganisms have been widely employed for the production of useful bioproducts including primary metabolites such as ethanol, succinic acid, acetone and butanol, secondary metabolites represented by antibiotics, proteins, polysaccharides, lipids and many others. Since these products can be obtained in small quantities under natural condition, mutation and selection processes have been employed for the improvement of strains. Recently, metabolic engineering strategies have been employed for more efficient production of these bioproducts. Metabolic engineering can be defined as purposeful modification of cellular metabolic pathways by introducing new pathways, deleting or modifying the existing pathways for the enhanced production of a desired product or modified/new product, degradation of xenobiotics, and utilization of inexpensive raw materials. Metabolic flux analysis and metabolic control analysis along with recombinant DNA techniques are three important components in designing optimized metabolic pathways, This powerful technology is being further improved by the genomics, proteomics, metabolomics and bioinformatics. Complete genome sequences are providing us with the possibility of addressing complex biological questions including metabolic control, regulation and flux. In silico analysis of microbial metabolic pathways is possible from the completed genome sequences. Transcriptome analysis by employing ONA chip allows us to examine the global pattern of gene expression at mRNA level. Two dimensional gel electrophoresis of cellular proteins can be used to examine the global proteome content, which provides us with the information on gene expression at protein level. Bioinformatics can help us to understand the results obtained with these new techniques, and further provides us with a wide range of information contained in the genome sequences. The strategies taken in our lab for the production of pharmaceutical proteins, polyhydroxyalkanoate (a family of completely biodegradable polymer), succinic acid and me chemicals by employing metabolic engineering powered by genomics, proteomics, metabolomics and bioinformatics will be presented.

  • PDF

Metabolic Flux Distribution for $\gamma$-Linolenic Acid Synthetic Pathways in Spirulina platensis

  • Meechai Asawin;Pongakarakun Siriluk;Deshnium Patcharaporn;Cheevadhanarak Supapon;Bhumiratana Sakarindr
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.506-513
    • /
    • 2004
  • Spirulina produces $\gamma$-linolenic acid (GLA), an important pharmaceutical substance, in a relatively low level compared with fungi and plants, prompting more research to improve its GLA yield. In this study, metabolic flux analysis was applied to determine the cellular metabolic flux distributions in the GLA synthetic pathways of two Spiru/ina strains, wild type BP and a high­GLA producing mutant Z19/2. Simplified pathways involving the GLA synthesis of S. platensis formulated comprise of photosynthesis, gluconeogenesis, the pentose phosphate pathway, the anaplerotic pathway, the tricarboxylic cycle, the GLA synthesis pathway, and the biomass syn­thesis pathway. A stoichiometric model reflecting these pathways contains 17 intermediates and 22 reactions. Three fluxes - the bicarbonate (C-source) uptake rate, the specific growth rate, and the GLA synthesis rate - were measured and the remaining fluxes were calculated using lin­ear optimization. The calculation showed that the flux through the reaction converting acetyl­CoA into malonyl-CoA in the mutant strain was nearly three times higher than that in the wild­type strain. This finding implies that this reaction is rate controlling. This suggestion was sup­ported by experiments, in which the stimulating factors for this reaction $(NADPH\;and\;MgCl_{2})$ were added into the culture medium, resulting in an increased GLA-synthesis rate in the wild type strain.

Mechanism Analysis of Effect of Oxygen on Molecular Weight of Hyaluronic Acid Produced by Streptococcus zooepidemicus

  • Duan, Xu-Jie;Niu, Hong-Xing;Tan, Wen-Song;Zhang, Xu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.299-306
    • /
    • 2009
  • Dissolved oxygen (DO) has a significant effect on the molecular weight of hyaluronic acid (HA) during the fermentation of Streptococcus zooepidemicus. Therefore, to further investigate the effect of DO on the yield and molecular weight of HA, this study compared the metabolic flux distribution of S. zooepidemicus under aerobic conditions at various DO levels. The metabolic flux analysis demonstrated that the HA synthesis pathway, considered a dependent network, was little affected by the DO level. In contrast, the fluxes of lactate and acetate were greatly influenced, and more ATP was generated concomitant with acetate at a high DO level. Furthermore, the has gene expression and HA synthase activity were both repressed under anaerobic conditions, yet not obviously affected under aerobic conditions at various DO levels. Therefore, it was concluded that the HA molecular weight would seem to depend on the concomitant effect of the generation of ATP and reactive oxygen species. It is expected that this work will contribute to a better understanding of the effect of the DO level on the mechanism of the elongation of HA chains.

Investigation of the Central Carbon Metabolism of Sorangium cellulosum: Metabolic Network Reconstruction and Quantification of Pathway Fluxes

  • Bolten, Christoph J.;Heinzle, Elmar;Muller, Rolf;Wittmann, Christoph
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.23-36
    • /
    • 2009
  • In the present work, the metabolic network of primary metabolism of the slow-growing myxobacterium Sorangium cellulosum was reconstructed from the annotated genome sequence of the type strain So ce56. During growth on glucose as the carbon source and asparagine as the nitrogen source, So ce56 showed a very low growth rate of $0.23\;d^{-1}$, equivalent to a doubling time of 3 days. Based on a complete stoichiometric and isotopomer model of the central metabolism, $^{13}C$ metabolic flux analysis was carried out for growth with glucose as carbon and asparagine as nitrogen sources. Normalized to the uptake flux for glucose (100%), cells recruited glycolysis (51%) and the pentose phosphate pathway (48%) as major catabolic pathways. The Entner-Doudoroff pathway and glyoxylate shunt were not active. A high flux through the TCA cycle (118%) enabled a strong formation of ATP, but cells revealed a rather low yield for biomass. Inspection of fluxes linked to energy metabolism revealed that S. cellulosum utilized only 10% of the ATP formed for growth, whereas 90% is required for maintenance. This explains the apparent discrepancy between the relatively low biomass yield and the high flux through the energy-delivering TCA cycle. The total flux of NADPH supply (216%) was higher than the demand for anabolism (156%), indicating additional reactions for balancing of NADPH. The cells further exhibited a highly active metabolic cycle, interconverting $C_3$ and $C_4$ metabolites of glycolysis and the TCA cycle. The present work provides the first insight into fluxes of the primary metabolism of myxobacteria, especially for future investigation on the supply of cofactors, building blocks, and energy in myxobacteria, producing natural compounds of biotechnological interest.

Intracellular Flux Prediction of Recombinant Escherichia coli Producing Gamma-Aminobutyric Acid

  • Sung Han Bae;Myung Sub Sim;Ki Jun Jeong;Dan He;Inchan Kwon;Tae Wan Kim;Hyun Uk Kim;Jong-il Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.978-984
    • /
    • 2024
  • Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.