Browse > Article
http://dx.doi.org/10.4014/jmb.0801.073

Mechanism Analysis of Effect of Oxygen on Molecular Weight of Hyaluronic Acid Produced by Streptococcus zooepidemicus  

Duan, Xu-Jie (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Niu, Hong-Xing (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Tan, Wen-Song (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Zhang, Xu (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.3, 2009 , pp. 299-306 More about this Journal
Abstract
Dissolved oxygen (DO) has a significant effect on the molecular weight of hyaluronic acid (HA) during the fermentation of Streptococcus zooepidemicus. Therefore, to further investigate the effect of DO on the yield and molecular weight of HA, this study compared the metabolic flux distribution of S. zooepidemicus under aerobic conditions at various DO levels. The metabolic flux analysis demonstrated that the HA synthesis pathway, considered a dependent network, was little affected by the DO level. In contrast, the fluxes of lactate and acetate were greatly influenced, and more ATP was generated concomitant with acetate at a high DO level. Furthermore, the has gene expression and HA synthase activity were both repressed under anaerobic conditions, yet not obviously affected under aerobic conditions at various DO levels. Therefore, it was concluded that the HA molecular weight would seem to depend on the concomitant effect of the generation of ATP and reactive oxygen species. It is expected that this work will contribute to a better understanding of the effect of the DO level on the mechanism of the elongation of HA chains.
Keywords
Oxygen; hyaluronic acid; metabolic flux analysis; hyaluronic acid synthase; reactive oxygen species;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Bai, D. M., X. M. Zhao, X. G. Li, and S. M. Xu. 2004. Strain improvement of Rhizopus oryzae for over-production $of_L$(+)-lactic acid and metabolic flux analysis of mutants. Biochem. Eng. J. 18: 41-48   DOI   ScienceOn
2 Crater, D. L. and I. van de Rijn. 1995. Hyaluronic acid synthesis operon (has) expression in group A Streptococci. J. Biol. Chem. 270: 18452-18458   DOI   ScienceOn
3 Gao, H. J., G. C. Du, and J. Chen. 2006. Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus. World J. Microbiol. Biotechnol. 22: 399-408   DOI   ScienceOn
4 Huang, W-C., S.-J. Chen, and T.-L. Chen. 2006. The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation. Biochem. Eng. J. 32: 239-243   DOI   ScienceOn
5 Kim, S.-J., S.-Y. Park, and C.-W. Kim. 2006. A novel approach to the production of hyaluronic by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 16: 1849-1855
6 Liu, H. J., Q. Li, D. H. Liu, and J. J. Zhong. 2006. Impact of hyperosmotic condition on cell physiology and metabolic flux distribution of Candida krusei. Biochem. Eng. J. 28: 92-98   DOI   ScienceOn
7 Praest, B. M., H. Greiling, and R$\ddot{u}$diger. Kock. 1997. Effects of oxygenderived free radicals on the molecular weight and the polydispersity of hyaluronan solutions. Carbohydr. Res. 303: 153-157   DOI   ScienceOn
8 Kogan, G., L. $\check{s}$olt$\acute{e}$s, R. Stern, and P. Gemeiner. 2007. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17-25   DOI   ScienceOn
9 Fong Chong, B. and L. K. Nielsen. 2003. Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase. Biochem. Eng. J. 16: 153-162   DOI   ScienceOn
10 Kietzmann, T., J. Fandrey, and H. Acker. 2000. Oxygen radicals as messengers in oxygen-dependent gene expression. News Physiol. Sci. 15: 202-208   PUBMED   ScienceOn
11 Nordkvist, M., N. B. Siemsen Jensen, and J. Villadsen. 2003. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions. Appl. Environ. Microbiol. 69: 3462-3468   DOI   ScienceOn
12 Siemsen Jensen, N. B., C. R. Melchiorsen, K. V. Jokumsen, and J. Villadsen. 2001. Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl. Environ. Microbiol. 67: 2677-2682   DOI   ScienceOn
13 Hasegawa, S., M. Nagatsuru, M. Shibutani, S. Yamamoto, and S. Hasebe. 1999. Productivity of concentrated hyaluronic acid using a maxblend${\circledR}$ fermentor. J. Biosci. Bioeng. 88: 68-71   DOI   ScienceOn
14 Yu, H. and G. Stephanopoulos. 2008. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab. Eng. 10: 24-32   DOI   ScienceOn
15 Fong Chong, B., L. M. Blank, R. McLaughlin, and L. K. Nielsen. 2005. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol. 66: 341-351   DOI   ScienceOn
16 Kang, S.-W., E. R. Cho, and B.-S. Kim. 2005. PLGA microspheres in hyaluronic acid gel as a potential bulking agent for urologic and dermatologic injection therapies. J. Microbiol. Biotechnol. 15: 510-518   과학기술학회마을   ScienceOn
17 Tlapak-Simmons, V. L., B. A. Baggenstoss, K. Kumari, C. Heldermon, and P. H. Weigel. 1999. Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. J. Biol. Chem. 274: 4246-4253   DOI   ScienceOn
18 Duan, X.-J., L. Yang, X. Zhang, and W.-S. Tan. 2008. Effect of oxygen and shear stress on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 18: 718-724   PUBMED   ScienceOn
19 Kim, T. Y. and S. Y. Lee. 2006. Accurate metabolic flux analysis through data reconciliation of isotope balance-based data. J. Microbiol. Biotechnol. 16: 1139-1143   ScienceOn
20 Presti, D. and J. E. Scott. 1994. Hyaluronan-mediated protective effect against cell damage caused by enzymatically produced hydroxyl (OH·) radicals is dependent on hyaluronan molecular mass. Cell Biochem. Funct. 12: 281-288   DOI   ScienceOn
21 Stephanopoulos, G. and J. J. Vallino. 1991. Network rigidity and metabolic engineering in metabolite overproduction. Science 252: 1675-1681   DOI   PUBMED
22 Fong Chong, B. and L. K. Nielsen. 2003. Amplifying the cellular reduction potential of Streptococcus zooepidemicus. J. Biotechnol. 100: 33-41   DOI   ScienceOn
23 Miller, G. L. 1959. Use of dinitrosalicylic reagent for determination of reducing sugars. Anal. Chem. 31: 426-428   DOI
24 Widner, B., R$\acute{e}$gine Behr, S. Von Dollen, M. Tang, T. Heu, A. Sloma, et al. 2005. Hyaluronic acid production in Bacillus subtilis. Appl. Environ. Microbiol. 71: 3747-3752   DOI   ScienceOn
25 Bunn, H. F. and R. O. Poyton. 1996. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76: 839-885   DOI   PUBMED
26 Armstrong, D. C. and M. R. Johns. 1997. Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Appl. Environ. Microbiol. 63:2759-2764   PUBMED   ScienceOn
27 Bitter, T. and H. M. Muir. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-333   DOI   PUBMED   ScienceOn
28 Kim, J.-H., S.-J. Yoo, D.-K. Oh, Y.-G. Kweon, D.-W. Park, C.-H. Lee, and G.-H. Gil. 1996. Selection of a Streptococcus equimutant and optimization of culture conditions for the production of molecular weight hyaluronic acid. Enzyme Microb. Technol. 19: 440-445   DOI   ScienceOn
29 Laurent, T. C., M. Ryan, and A. Pietruszkiewicz. 1960. Fraction of hyaluronic acid. The polydispersity of hyaluronic acid from the bovine vitreous body. Biochim. Biophys. Acta 42: 476-485   DOI   ScienceOn