Browse > Article
http://dx.doi.org/10.4014/jmb.0803.213

Investigation of the Central Carbon Metabolism of Sorangium cellulosum: Metabolic Network Reconstruction and Quantification of Pathway Fluxes  

Bolten, Christoph J. (Biochemical Engineering, Saarland University)
Heinzle, Elmar (Biochemical Engineering, Saarland University)
Muller, Rolf (Pharmaceutical Biotechnology, Saarland University)
Wittmann, Christoph (Biochemical Engineering, Saarland University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.1, 2009 , pp. 23-36 More about this Journal
Abstract
In the present work, the metabolic network of primary metabolism of the slow-growing myxobacterium Sorangium cellulosum was reconstructed from the annotated genome sequence of the type strain So ce56. During growth on glucose as the carbon source and asparagine as the nitrogen source, So ce56 showed a very low growth rate of $0.23\;d^{-1}$, equivalent to a doubling time of 3 days. Based on a complete stoichiometric and isotopomer model of the central metabolism, $^{13}C$ metabolic flux analysis was carried out for growth with glucose as carbon and asparagine as nitrogen sources. Normalized to the uptake flux for glucose (100%), cells recruited glycolysis (51%) and the pentose phosphate pathway (48%) as major catabolic pathways. The Entner-Doudoroff pathway and glyoxylate shunt were not active. A high flux through the TCA cycle (118%) enabled a strong formation of ATP, but cells revealed a rather low yield for biomass. Inspection of fluxes linked to energy metabolism revealed that S. cellulosum utilized only 10% of the ATP formed for growth, whereas 90% is required for maintenance. This explains the apparent discrepancy between the relatively low biomass yield and the high flux through the energy-delivering TCA cycle. The total flux of NADPH supply (216%) was higher than the demand for anabolism (156%), indicating additional reactions for balancing of NADPH. The cells further exhibited a highly active metabolic cycle, interconverting $C_3$ and $C_4$ metabolites of glycolysis and the TCA cycle. The present work provides the first insight into fluxes of the primary metabolism of myxobacteria, especially for future investigation on the supply of cofactors, building blocks, and energy in myxobacteria, producing natural compounds of biotechnological interest.
Keywords
Myxobacteria; primary metabolism; flux; NADPH; maintenance;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bode, H. B., B. Zeggel, B. Silakowski, S. C. Wenzel, H. Reichenbach, and R. M$\ddot{u}$ller. 2003. Steroid biosynthesis in prokaryotes: Identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol. Microbiol. 47: 471-481   DOI   ScienceOn
2 Fischer, E. and U. Sauer. 2003. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem. 270: 880-891   DOI   ScienceOn
3 Gerth, K., D. Schummer, G. Hofle, H. Irschik, and H. Reichenbach. 1995. Ratjadon: A new antifungal compound from Sorangium cellulosum (myxobacteria)-production, physiochemical and biological properties. J. Antibiot. (Tokyo) 48:973-976   DOI   PUBMED
4 Hardt, I. H., H. Steinmetz, K. Gerth, F. Sasse, H. Reichenbach, and G. Hofle. 2001. New natural epothilones from Sorangium cellulosum, strains So ce90/B2 and So ce90/D13: Isolation, structure elucidation, and SAR studies. J. Nat. Prod. 64: 847-856   DOI   ScienceOn
5 Irschik, H., R. Jansen, K. Gerth, G. Hofle, and H. Reichenbach. 1995. Chivosazol A, a new inhibitor of eukaryotic organisms isolated from myxobacteria. J. Antibiot. (Tokyo) 48: 962-966   DOI   PUBMED
6 Irschik, H., R. Jansen, K. Gerth, G. Hofle, and H. Reichenbach. 1995. Disorazol A, an efficient inhibitor of eukaryotic organisms isolated from myxobacteria. J. Antibiot. (Tokyo) 48: 31-35   DOI   PUBMED   ScienceOn
7 Irschik, H., R. Jansen, K. Gerth, G. Hofle, and H. Reichenbach. 1995. Sorangiolid A, a new antibiotic isolated from the myxobacterium Sorangium cellulosum So ce 12. J. Antibiot. (Tokyo) 48: 886-887   DOI   PUBMED   ScienceOn
8 Schneiker, S., O. Perlova, A. Alici, M. O. Altmeyer, D. Bartels, T. Bekel, et al. 2007. Complete sequence of the largest known bacterial genome from the myxobacterium Sorangium cellulosum. Nat. Biotechnol. 25: 1281-1289   DOI   ScienceOn
9 Wittmann, C. and A. de Graaf. 2005. Metabolic flux analysis in Corynebacterium glutamicum, pp. 277-304. In L. Eggeling and M. Bott (eds.), Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton
10 Watson, B. F. and M. Dworkin. 1968. Comparative intermediary metabolism of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 96: 1465-1473   PUBMED
11 Wittmann, C. and E. Heinzle. 2001. Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab. Eng. 3: 173-191   DOI   ScienceOn
12 Wittmann, C., H. M. Kim, G. John, and E. Heinzle. 2003. Characterization and application of an optical sensor for quantification of dissolved $O_2$ in shake-flasks. Biotechnol. Lett. 25: 377-380   DOI   ScienceOn
13 Wittmann, C., P. Kiefer, and O. Zelder. 2004. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol. 70: 7277-7287   DOI   ScienceOn
14 Wittmann, C., M. Hans, and E. Heinzle. 2002. In vivo analysis of intracellular amino acid labelings by GC/MS. Anal. Biochem. 307: 379-382   DOI   ScienceOn
15 Kromer, J. O., O. Sorgenfrei, K. Klopprogge, E. Heinzle, and C. Wittmann. 2004. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186:1769-1784   DOI   ScienceOn
16 Minnikin, D. E., L. Alshamaony, and M. Goodfellow. 1975. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J. Gen. Microbiol. 88: 200-204   DOI   PUBMED   ScienceOn
17 Noguchi, Y., Y. Nakai, N. Shimba, H. Toyosaki, Y. Kawahara, S. Sugimoto, and E. Suzuki. 2004. The energetic conversion competence of Escherichia coli during aerobic respiration studied by 31P NMR using a circulating fermentation system. J. Biochem. (Tokyo) 136: 509-515   DOI   ScienceOn
18 Wittmann, C. 2002. Metabolic flux analysis using mass spectrometry. Adv. Biochem. Eng. Biotechnol. 74: 39-64
19 Gerth, K., S. Pradella, O. Perlova, S. Beyer, and R. M$\ddot{u}$ller. 2003. Myxobacteria: Proficient producers of novel natural products with various biological activities -- past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106: 233-253   DOI   PUBMED   ScienceOn
20 Reichenbach, H. 1986. The myxobacteria: Common organisms with uncommon behaviour. Microbiol. Sci. 3: 268-274   PUBMED   ScienceOn
21 Wittmann, C. and E. Heinzle. 2002. Genealogy profiling through strain improvement by using metabolic network analysis: Metabolic flux genealogy of several generations of lysineproducing corynebacteria. Appl. Environ. Microbiol. 68: 5843-5859   DOI   ScienceOn
22 Gerth, K., N. Bedorf, H. Irschik, G. Hofle, and H. Reichenbach. 1994. The soraphens: A family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1 alpha: Fermentation, isolation, biological properties. J. Antibiot. (Tokyo) 47: 23-31   DOI   PUBMED
23 Irschik, H., R. Jansen, K. Gerth, G. Hofle, and H. Reichenbach. 1987. The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J. Antibiot. (Tokyo) 40: 7-13   DOI   PUBMED
24 Pradella, S., A. Hans, C. Sproer, H. Reichenbach, K. Gerth, and S. Beyer. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch. Microbiol. 178: 484-492   DOI   ScienceOn
25 Stouthamer, A. H. 1979. The search for correlation between theoretical and experimental growth yields, pp. 1-47. In J. R. Quayle (ed.), Microbial Biochemistry, Vol. 21. University Park Press, Baltimore
26 Reichenbach, H. 2001. Myxobacteria, producers of novel bioactive substances. J. Ind. Microbiol. Biotechnol. 27: 149-156   DOI   ScienceOn
27 Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917   DOI   PUBMED   ScienceOn
28 Bode, H. B. and R. M$\ddot{u}$ller. 2006. Analysis of myxobacterial secondary metabolism goes molecular. J. Ind. Microbiol. Biotechnol. 33: 577-588   DOI   ScienceOn
29 Frick, O. and C. Wittmann. 2005. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb. Cell Fact. 4: 30   DOI   ScienceOn
30 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275   PUBMED
31 Mahmud, T., H. B. Bode, B. Silakowski, R. M. Kroppenstedt, M. Xu, S. Nordhoff, G. Hofle, and R. Muller. 2002. A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria. J. Biol. Chem. 277: 32768-32774   DOI   ScienceOn
32 Bacon, K., D. Clutter, R. H. Kottel, M. Orlowski, and D. White. 1975. Carbohydrate accumulation during myxospore formation in Myxococcus xanthus. J. Bacteriol. 124: 1635-1636   PUBMED
33 Bollag, D. M. 1997. Epothilones: Novel microtubule-stabilising agents. Expert Opin. Investig. Drugs 6: 867-873   DOI   ScienceOn
34 Gerth, K., N. Bedorf, G. Hofle, H. Irschik, and H. Reichenbach. 1996. Epothilons A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physicochemical and biological properties. J. Antibiot. (Tokyo) 49: 560-563   DOI   PUBMED
35 Pirt, S. J. 1965. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. B Biol. Sci. 163: 224-231   DOI   PUBMED   ScienceOn
36 Thomas, E., J. Tabernero, M. Fornier, P. Conte, P. Fumoleau, A. Lluch, et al. 2007. Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, in patients with taxaneresistant metastatic breast cancer. J. Clin. Oncol. 25: 3399-3406   DOI   ScienceOn
37 Wittmann, C. and E. Heinzle. 1999. Mass spectrometry for metabolic flux analysis. Biotechnol. Bioeng. 62: 739-750   DOI   ScienceOn
38 Wittmann, C., H. M. Kim, and E. Heinzle. 2004. Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol. Bioeng. 87: 1-6   DOI   ScienceOn
39 Gombert, A. K., M. Moreira dos Santos, B. Christensen, and J. Nielsen. 2001. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183:1441-1451   DOI   ScienceOn
40 Kromer, J. O., M. Fritz, E. Heinzle, and C. Wittmann. 2005. In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal. Biochem. 340: 171-173   DOI   ScienceOn
41 Sauer, U., F. Canonaco, S. Heri, A. Perrenoud, and E. Fischer. 2004. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279: 6613-6619   DOI   ScienceOn
42 Sauer, U. and B. J. Eikmanns. 2005. The PEP-pyruvateoxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol. Rev. 29: 765-794   DOI   ScienceOn
43 Hofman, U. 1989. Physiologische Studien an Sorangium cellulosum, So ce 12. Technical University, Braunschweig
44 van Winden, W. A., C. Wittmann, E. Heinzle, and J. J. Heijnen. 2002. Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol. Bioeng. 80: 477-479   DOI   ScienceOn
45 Dauner, M., J. E. Bailey, and U. Sauer. 2001. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol. Bioeng. 76: 144-156   DOI   ScienceOn
46 Becker, J., C. Klopprogge, O. Zelder, E. Heinzle, and C. Wittmann. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596   DOI   ScienceOn
47 Bollag, D. M., P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, and C. M. Woods. 1995. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55: 2325-2333   PUBMED   ScienceOn