• Title/Summary/Keyword: metabolic diseases

Search Result 944, Processing Time 0.032 seconds

The Study on Risk Factor of Metabolic Diseases in Pancreatic Steatosis (췌장지방증에서 대사성질환의 위험 요인에 관한 연구)

  • Cho, Jin-Young;Ye, Soo-Young;Kim, Dong-Hyun
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • The body of the fat tissue increased in obese represented by risk factors such as cardiovascular diseases, diabetes, metabolic disease and dyslipidemia. Such metabolic diseases and the like of the cardiovascular and cerebrovascular disease, hypertension, dyslipidemia, increase in the adipose tissue of the pancreas is known to be a risk factor of these diseases. Study on the diagnosis and treatment of pancreatic cancer was conducted actively, case studies on pancreatic steatosis is not much. In this study, divided into a control group diagnosed with pancreatic steatosis as a result of ultrasonography to evaluation the physical characteristics and serologic tests and blood pressure and arterial stiffness. The control group and the test pancreas steatosis age and waist circumference, body mass index, total cholesterol, HDL cholesterol, LDL cholesterol, and systolic and diastolic blood pressure, fasting blood glucose, arterial elasticity is higher in pancreatic steatosis. And the lower ankle brachial stenosis and HDL-cholesterol were lower than the normal control group, so the pancreatic steatosis harmful to blood vessels.(P <0.05). The difference between the control group and it was confirmed that the pancreatic jibanggun statistically significant. In conclusion, pancreatic steatosis at abdominal ultrasound can predict the risk of metabolic diseases, and there was a correlation with cardiovascular disease.

Effects of Combined Marine Treatment Program on Risk Factors of Metabolic Syndrome, and CRP in Elderly Musculoskeletal and Metabolic Patients (복합 해양치유 프로그램이 근골격계 및 대사성 질환자의 대사증후군 위험인자 및 CRP에 미치는 영향)

  • Kim, Hyunjun;Shin, Jaesuk
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 2020
  • Purpose : The purpose of this study is to verify the effectiveness of combined marine healing programs by analyzing the physical composition of elderly musculoskeletal and metabolic patients, the risk factors of metabolic syndrome and the effects of the inflammatory factors, the C -reactive protein (CRP). Methods : Individuals with musculoskeletal and metabolic diseases were identified, and marine healing programs were conducted for f our hours each day for two weeks with 11 elderly participants. A one-way RM ANOVA was conducted to determine the differences due to treatment with composite marine healing systems. The results are as follows. Results : After a two-week ocean healing program, weight decreased the most, while BMI also decreased and muscle mass increased. Waist circumference, a risk factor for metabolic syndrome and CRP, decreased, and CRP demonstrated a decreasing trend. Conclusion : The above results show that the two-week marine healing program has a positive effect on the body composition and inflammatory factors of elderly musculoskeletal and metabolic patients.

Congenital Metabolic Disorders with Cutaneous Changes (피부계 이상을 동반하는 선천성대사질환)

  • Sang Eun, Lee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.22 no.2
    • /
    • pp.53-57
    • /
    • 2022
  • Congenital metabolic disorders are rare inherited disorders resulting from a defect in biochemical and metabolic pathways affecting proteins, fats, carbohydrates metabolism or impaired organelle function. Depending on the abnormality of biochemical metabolism, various precursors and their abnormal metabolites can accumulate in the body and the final products which are critical in normal physiology can be deficient, resulting in disease. Congenital metabolic disorders present complicated medical conditions involving several human organ systems, including nervous system, eyes, liver, and kidneys. Various proteins and lipids are involved in the development and homeostasis of the skin, so many congenital metabolic disorders present abnormal changes in skin and hair. In this review, congenital metabolic diseases related to amino acid and lipid metabolism accompanying skin abnormalities will be discussed.

Biological functions of histidine-dipeptides and metabolic syndrome

  • Song, Byeng Chun;Joo, Nam-Seok;Aldini, Giancarlo;Yeum, Kyung-Jin
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.3-10
    • /
    • 2014
  • The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (${\beta}$-alanyl-L-histidine) and anserine (${\beta}$-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans.

Association between metabolic syndrome components and cardiac autonomic modulation in southern Indian adults with pre-metabolic syndrome: hyperglycemia is the major contributing factor

  • Endukuru Chiranjeevi Kumar;Girwar Singh Gaur;Dhanalakshmi Yerrabelli;Jayaprakash Sahoo;Balasubramaniyan Vairappan;Alladi Charanraj Goud
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Metabolic syndrome (MetS) involves multi-factorial conditions linked to an elevated risk of type 2 diabetes mellitus and cardiovascular disease. Pre-metabolic syndrome (pre-MetS) possesses two MetS components but does not meet the MetS diagnostic criteria. Although cardiac autonomic derangements are evident in MetS, there is little information on their status in pre-MetS subjects. In this study, we sought to examine cardiac autonomic functions in pre-MetS and to determine which MetS component is more responsible for impaired cardiac autonomic functions. A total of 182 subjects were recruited and divided into healthy controls (n=89) and pre-MetS subjects (n=93) based on inclusion and exclusion criteria. We performed biochemical profiles on fasting blood samples to detect pre-MetS. Using standardized protocols, we evaluated anthropometric data, body composition, baroreflex sensitivity (BRS), heart rate variability (HRV), and autonomic function tests (AFTs). We further examined these parameters in pre-MetS subjects for each MetS component. Compared to healthy controls, we observed a significant cardiac autonomic dysfunction (CAD) through reduced BRS, lower overall HRV, and altered AFT parameters in pre-MetS subjects, accompanied by markedly varied anthropometric, clinical and biochemical parameters. Furthermore, all examined BRS, HRV, and AFT parameters exhibited an abnormal trend and significant correlation toward hyperglycemia. This study demonstrates CAD in pre-MetS subjects with reduced BRS, lower overall HRV, and altered AFT parameters. Hyperglycemia was considered an independent determinant of alterations in all the examined BRS, HRV, and AFT parameters. Thus, hyperglycemia may contribute to CAD in pre-MetS subjects before progressing to MetS.

The Metabolic Functional Feature of Gut Microbiota in Mongolian Patients with Type 2 Diabetes

  • Yanchao Liu;Hui Pang;Na Li;Yang Jiao;Zexu Zhang;Qin Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1214-1221
    • /
    • 2024
  • The accumulating evidence substantiates the indispensable role of gut microbiota in modulating the pathogenesis of type 2 diabetes. Uncovering the intricacies of the mechanism is imperative in aiding disease control efforts. Revealing key bacterial species, their metabolites and/or metabolic pathways from the vast array of gut microorganisms can significantly contribute to precise treatment of the disease. With a high prevalence of type 2 diabetes in Inner Mongolia, China, we recruited volunteers from among the Mongolian population to investigate the relationship between gut microbiota and the disease. Fecal samples were collected from the Volunteers of Mongolia with Type 2 Diabetes group and a Control group, and detected by metagenomic analysis and untargeted metabolomics analysis. The findings suggest that Firmicutes and Bacteroidetes phyla are the predominant gut microorganisms that exert significant influence on the pathogenesis of type 2 diabetes in the Mongolian population. In the disease group, despite an increase in the quantity of most gut microbial metabolic enzymes, there was a concomitant weakening of gut metabolic function, suggesting that the gut microbiota may be in a compensatory state during the disease stage. β-Tocotrienol may serve as a pivotal gut metabolite produced by gut microorganisms and a potential biomarker for type 2 diabetes. The metabolic biosynthesis pathways of ubiquinone and other terpenoid quinones could be the crucial mechanism through which the gut microbiota regulates type 2 diabetes. Additionally, certain Clostridium gut species may play a pivotal role in the progression of the disease.

The gut microbiota: a key regulator of metabolic diseases

  • Yang, Jin-Young;Kweon, Mi-Na
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.536-541
    • /
    • 2016
  • The prevalence of obesity and type 2 diabetes, two closely linked metabolic disorders, is increasing worldwide. Over the past decade, the connection between these disorders and the microbiota of the gut has become a major focus of biomedical research, with recent studies demonstrating the fundamental role of intestinal microbiota in the regulation and pathogenesis of metabolic disorders. Because of the complexity of the microbiota community, however, the underlying molecular mechanisms by which the gut microbiota is associated with metabolic disorders remain poorly understood. In this review, we summarize recent studies that investigate the role of the microbiota in both human subjects and animal models of disease and discuss relevant therapeutic targets for future research.

Preimplantation Genetic Diagnosis in Inborn Error Metabolic Disorders (유전성 대사질환의 착상전 유전진단)

  • Kang, Inn Soo
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.94-107
    • /
    • 2005
  • Prenatal diagnosis (PND) such as amniocentesis or chorionic villi sampling has been widely used in order to prevent the birth of babies with defects especially in families with single gene disorderor chromosomal abnormalities. Preimplantation genetic diagnosis (PGD) has already become an alternative to traditional PND. Indications for PGD have expanded beyond those practices in PND (chromosomal abnormalities, single gene defects), such as late-onset diseases with genetic predisposition, and HLA typing for stem cell transplantation to affected sibling. After in vitro fertilization, the biopsied blastomere from the embryo is analyzed for single gene defect or chromosomal abnormality. The unaffected embryos are selected for transfer to the uterine cavity. Therefore, PGD has an advantage over PND as it can avoid the risk of pregnancy termination. In this review, PGD will be introduced and application of PGD in inborn error metabolic disorder will be discussed.

  • PDF

Lipid Metabolism, Disorders and Therapeutic Drugs - Review

  • Natesan, Vijayakumar;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.596-604
    • /
    • 2021
  • Different lifestyles have an impact on useful metabolic functions, causing disorders. Different lipids are involved in the metabolic functions that play various vital roles in the body, such as structural components, storage of energy, in signaling, as biomarkers, in energy metabolism, and as hormones. Inter-related disorders are caused when these functions are affected, like diabetes, cancer, infections, and inflammatory and neurodegenerative conditions in humans. During the Covid-19 period, there has been a lot of focus on the effects of metabolic disorders all over the world. Hence, this review collectively reports on research concerning metabolic disorders, mainly cardiovascular and diabetes mellitus. In addition, drug research in lipid metabolism disorders have also been considered. This review explores lipids, metabolism, lipid metabolism disorders, and drugs used for these disorders.

Bile Acids and the Metabolic Disorders (담즙산과 대사질환)

  • Roh, Ji Hye;Yoon, Jeong-Hyun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.28 no.4
    • /
    • pp.273-278
    • /
    • 2018
  • Bile acids are major constituents of bile and known to help absorb dietary fat and fat-soluble vitamins in the gastrointestinal tract. In the past few decades, many studies have shown that bile acids not only play a role in fat digestion but also function as broad range of signal transduction hormones by binding to various receptors present in cell membranes or nuclei. Bile acid receptors are distributed in a wide range of organs and tissues in the human body. They perform multitudes of physiological functions with complex mechanisms. When bile acids bind to their receptors, they regulate fat and glucose metabolism in a tissue-specific way. In addition, bile acids are shown to inhibit inflammation and fibrosis in the liver. Considering the roles of bile acids as metabolic regulators, bile acids and their receptors can be very attractive targets in treating metabolic disorders. In the future, if roles of bile acids and their receptors are further clarified, they will be the novel target of drugs in the treatment of various metabolic diseases.