• Title/Summary/Keyword: mesoscale model

Search Result 179, Processing Time 0.029 seconds

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin;Kong, Xiangzhe;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1575-1588
    • /
    • 2019
  • Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.

Development of wind Map Over North Korea using the Mesoscale Model WRF (중규모 수치모델 WRF를 이용한 북한 풍력-기상자원지도 개발)

  • Seo, Beom-Keun;Byon, Jae-Young;Choi, Young-Jean
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.471-480
    • /
    • 2011
  • This study investigates the characteristics of surface wind in North Korea using mesoscale model WRF. Hourly wind fields were simulated for one year representing mean characteristics of an 11-years period from 1998 to 2008. The simulations were performed on a nested grid from 27 km to 1 km horizontal resolution. The simulated wind map at 10 m above ground level is verified with 27 surface observations. Statistical verification skill score indicates that wind speed tends to overestimate in surface layer. The average RMSE value of the simulated wind speed is around $2.8ms^{-1}$. Wind map in North Korea showed that strong wind speed is distributed in the mountainous and western coastal region. The results of this wind mapping study contribute for the founding of wind energy potential location.

Simulation of Grape Downy Mildew Development Across Geographic Areas Based on Mesoscale Weather Data Using Supercomputer

  • Kim, Kyu-Rang;Seem, Robert C.;Park, Eun-Woo;Zack, John W.;Magarey, Roger D.
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.111-118
    • /
    • 2005
  • Weather data for disease forecasts are usually derived from automated weather stations (AWS) that may be dispersed across a region in an irregular pattern. We have developed an alternative method to simulate local scale, high-resolution weather and plant disease in a grid pattern. The system incorporates a simplified mesoscale boundary layer model, LAWSS, for estimating local conditions such as air temperature and relative humidity. It also integrates special models for estimating of surface wetness duration and disease forecasts, such as the grapevine downy mildew forecast model, DMCast. The system can recreate weather forecasts utilizing the NCEP/NCAR reanalysis database, which contains over 57 years of archived and corrected global upper air conditions. The highest horizontal resolution of 0.150 km was achieved by running 5-step nested child grids inside coarse mother grids. Over the Finger Lakes and Chautauqua Lake regions of New York State, the system simulated three growing seasons for estimating the risk of grape downy mildew with 1 km resolution. Outputs were represented as regional maps or as site-specific graphs. The highest resolutions were achieved over North America, but the system is functional for any global location. The system is expected to be a powerful tool for site selection and reanalysis of historical plant disease epidemics.

Development of the Korea Ocean Prediction System

  • Suk, Moon-Sik;Chang, Kyung-Il;Nam, Soo-Yong;Park, Sung-Hyea
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.181-188
    • /
    • 2001
  • We describe here the Korea ocean prediction system that closely resembles operational numerical weather prediction systems. This prediction system will be served for real-time forecasts. The core of the system is a three-dimensional primitive equation numerical circulation model, based on ${\sigma}$-coordinate. Remotely sensed multi-channel sea surface temperature (MCSST) is imposed at the surface. Residual subsurface temperature is assimilated through the relationship between vertical temperature structure function and residual of sea surface height (RSSH) using an optimal interpolation scheme. A unified grid system, named as [K-E-Y], that covers the entire seas around Korea is used. We present and compare hindcasting results during 1990-1999 from a model forced by MCSST without incorporating RSSH data assimilation and the one with both MCSST and RSSH assimilated. The data assimilation is applied only in the East Sea, hence the comparison focuses principally on the mesoscale features prevalent in the East Sea. It is shown that the model with the data assimilation exhibits considerable skill in simulating both the permanent and transient mesoscale features in the East Sea.

  • PDF

Mesoscale computational simulation of the mechanical response of reinforced concrete members

  • Wang, Licheng;Bao, Jiuwen
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.305-319
    • /
    • 2015
  • On mesoscopic level, concrete can be treated as a three-phase composite material consisting of mortar, aggregates and interfacial transition zone (ITZ) between mortar and aggregate. A lot of research has confirmed that ITZ plays a crucial role in the mechanical fracture process of concrete. The aim of the present study is to propose a numerical method on mesoscale to analyze the failure mechanism of reinforced concrete (RC) structures under mechanical loading, and then it will help precisely predict the damage or the cracking initiation and propagation of concrete. Concrete is meshed by means of the Rigid Body Spring Model (RBSM) concept, while the reinforcing steel bars are modeled as beam-type elements. Two kinds of RC members, i.e. subjected to uniaxial tension and beams under bending, the fracture process of concrete and the distribution of cracks, as well as the load-deflection relationships are investigated and compared with the available test results. It is found that the numerical results are in good agreement with the experimental observations, indicating that the model can successfully simulate the failure process of the RC members.

The Effect of Radar Data Assimilation in Numerical Models on Precipitation Forecasting (수치모델에서 레이더 자료동화가 강수 예측에 미치는 영향)

  • Ji-Won Lee;Ki-Hong Min
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.457-475
    • /
    • 2023
  • Accurately predicting localized heavy rainfall is challenging without high-resolution mesoscale cloud information in the numerical model's initial field, as precipitation intensity and amount vary significantly across regions. In the Korean Peninsula, the radar observation network covers the entire country, providing high-resolution data on hydrometeors which is suitable for data assimilation (DA). During the pre-processing stage, radar reflectivity is classified into hydrometeors (e.g., rain, snow, graupel) using the background temperature field. The mixing ratio of each hydrometeor is converted and inputted into a numerical model. Moreover, assimilating saturated water vapor mixing ratio and decomposing radar radial velocity into a three-dimensional wind vector improves the atmospheric dynamic field. This study presents radar DA experiments using a numerical prediction model to enhance the wind, water vapor, and hydrometeor mixing ratio information. The impact of radar DA on precipitation prediction is analyzed separately for each radar component. Assimilating radial velocity improves the dynamic field, while assimilating hydrometeor mixing ratio reduces the spin-up period in cloud microphysical processes, simulating initial precipitation growth. Assimilating water vapor mixing ratio further captures a moist atmospheric environment, maintaining continuous growth of hydrometeors, resulting in concentrated heavy rainfall. Overall, the radar DA experiment showed a 32.78% improvement in precipitation forecast accuracy compared to experiments without DA across four cases. Further research in related fields is necessary to improve predictions of mesoscale heavy rainfall in South Korea, mitigating its impact on human life and property.

Nudging of Vertical Profiles of Meteorological Parameters in One-Dimensional Atmospheric Model: A Step Towards Improvements in Numerical Simulations

  • Subrahamanyam, D. Bala;Rani, S. Indira;Ramachandran, Radhika;Kunhikrishnan, P. K.
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.165-173
    • /
    • 2008
  • In this article, we describe a simple yet effective method for insertion of observational datasets in a mesoscale atmospheric model used in one-dimensional configuration through Nudging. To demonstrate the effectiveness of this technique, vertical profiles of meteorological parameters obtained from GLASS Sonde launches from a tiny island of Kaashidhoo in the Republic of Maldives are injected in a mesoscale atmospheric model - Advanced Regional Prediction System (ARPS), and model simulated parameters are compared with the available observational datasets. Analysis of one-time nudging in the model simulations over Kaashidhoo show that incorporation of this technique reasonably improves the model simulations within a time domain of +6 to +12 Hrs, while its impact on +18 Hrs simulations and beyond becomes literally null.

Predictions of Local Circulation and Dispersion with Microscale Numerical Model (수치모의를 통한 미세규모 순환과 확산에 대한 예측)

  • 안광득;이용희;장동언;조천호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.147-158
    • /
    • 2003
  • The prediction of wind field is very important fact in the radioactive and chemical warfare. In spite of advanced numerical weather prediction modelling and computing technology, the high resolution prediction of wind field is limited by the very high integration costs. In this study we coupled the mesoscale numerical model and microscale diagnostic numerical model with minimized integration costs. This coupled model has not only the ability of prediction of high resolution wind field including complex building but also microscale pollutant diffusion fields. For military operation this system can help making a practical and cost-effective decision in a battle field.

High Resolution Probabilistic Quantitative Precipitation Forecasting in Korea

  • Oh, Jai-Ho;Kim, Ok-Yeon;Yi, Han-Se;Kim, Tae-Kuk
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.2
    • /
    • pp.74-79
    • /
    • 2005
  • Recently, several attempts have been made to provide reasonable information on unusual severe weather phenomena such as tolerant heavy rains and very wild typhoons. Quantitative precipitation forecasts and probabilistic quantitative precipitation forecasts (QPFs and PQPFs, respectively) might be one of the most promising methodologies for early warning on the flesh floods because those diagnostic precipitation models require less computational resources than fine-mesh full-dynamics non-hydrostatic mesoscale model. The diagnostic rainfall model used in this study is the named QPM(Quantitative Precipitation Model), which calculates the rainfall by considering the effect of small-scale topography which is not treated in the mesoscale model. We examine the capability of probabilistic diagnostic rainfall model in terms of how well represented the observed several rainfall events and what is the most optimistic resolution of the mesoscale model in which diagnostic rainfall model is nested. Also, we examine the integration time to provide reasonable fine-mesh rainfall information. When we apply this QPM directly to 27 km mesh meso-scale model (called as M27-Q3), it takes about 15 min. while it takes about 87 min. to get the same resolution precipitation information with full dynamic downscaling method (called M27-9-3). The quality of precipitation forecast by M27-Q3 is quite comparable with the results of M27-9-3 with reasonable threshold value for precipitation. Based on a series of examination we may conclude that the proosed QPM has a capability to provide fine-mesh rainfall information in terms of time and accuracy compared to full dynamical fine-mesh meso-scale model.

  • PDF