• Title/Summary/Keyword: mesoporous silica

Search Result 188, Processing Time 0.022 seconds

Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts (이온성 액체가 담지된 메조포로스 실리카 촉매를 이용한 Tricyclopentadiene 합성)

  • Kim, Su-Jung;Jeon, Jong-Ki;Han, Jeongsik;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.190-194
    • /
    • 2016
  • Tricyclopentadiene (TCPD) is one of the important precursors for making tetrahydrotricyclopentadiene, which is well known as a next-generation fuel with high energy density. In this study, TCPD was obtained by polymerization reaction of dicyclopentadiene (DCPD) using an ionic liquid (IL) supported mesoporous silica catalysts. ILs were supported to two kinds of mesoporous silica catalysts with different pore sizes such as MCM-41 and SBA-15. Four different ILs were supported to mesoporous silicas using anionic precursors such as CuCl or $FeCl_3$ and cationic precursors such as triethylamine hydrochloride or 1-butyl-3-methylimidazolium chloride. We proved that IL supported mesoporous silicas showed better catalytic performance than those of using non-supported prestine IL in the aspect of TCPD yield and DCPD conversion. Among four kinds of IL supported mesoporous silica catalysts, CuCl-based IL supported MCM-41 system showed the highest TCPD yield.

Surface Charge and Morphological Characterization of Mesoporous Cellular Foam Silica/Nafion Composite Membrane by Using EFM (정전기력 현미경을 사용한 메조포러스 실리카/나피온 합성 이온교환막의 표면 전하 및 모폴로지 연구)

  • Kwon, Osung
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1173-1182
    • /
    • 2018
  • Mesoporous silica allows proper hydration of an ion exchange membrane under low relative humidity due to its strong hydrophilicity and structural characteristic. A mesoporous silica and Nafion composite membrane shows good proton conductivity under low relative humidity. An understanding of ion-channel formation and proton transfer through an ion-channel network in mesoporous silica and Nafion composite membranes is essential for the development and the optimization of ion exchange membranes. In this study, a mesoporous cellular foam $SiO_2/Nafion$ composite membrane is fabricated, and its proton conductivity and performance are measured. Also, the ion-channel distribution is analyzed by using electrostatic force microscopy to measure the surface charge density of the mesoporous cellular foam $SiO_2/Nafion$ composite membrane. The research reveals a few remarkable results. First, the composite membrane shows excellent proton conductivity and performance under low relative humidity. Second, the composite membrane is observed to form ion-channel-rich and ion-channel-poor region locally.

Adsorption of MX (3-chloro-4 (dichloromethyl)-5-hydroxy-2-(5H)-furanone) on amphiphilic mesoporous silica in aqueous solution (양쪽성 메조 포러스 실리카에 의한 수용액 속의 MX의 흡착)

  • Yoo, Eun-Ah;Chung, Kang-Sup
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.94-104
    • /
    • 2011
  • Mesoporous silica was synthesized in a water solvent and in an ethanol solvent with the non and cationic cetyltrimethyl ammonium chloride (CTAC) by varying the amount of the amphiphilic acrylic urethane oligomer (AAU) and the pH of the solution. The adsorption of the MX (3-chloro-4 (dichloromethyl)-5-hydroxy-2-(5H)-furanone) in drinking water was studied using the synthesized mesoporous silica as an adsorbent. The most appropriate silica was synthesized in acidic conditions in the water solvent and in alkali conditions in the ethanol solvent. The average pore sizes of the synthesized mesosilica were 3 nm and more. The mesoporous silica synthesized by the addition of the AAU oligomer showed excellent adsorption characteristics. With respect to the co-surfactant, the best adsorption characteristics were obtained when the P64,a non-ionic surfactant with a high molecular weight, was used to synthesize the silica than when other co-surfactants were used. The adsorption rate decreased as the MX concentration in the water increased. Different adsorption equilibrium conditions were reached depending on the adsorbate MX concentration in the adsorbent and the solution. It was seen that perfect adsorption does not occur due to such equilibrium conditions.

Li, Zr doped mesoporous silica: One pot synthesis and its application to $CO_2$ adsorption at low temperature (Li, Zr 담지 메조포러스 실리카 합성 : One pot 합성 및 저온 이산화탄소 흡착 응용)

  • Ganesh, Mani;Bhagiyalakshmi, Margandan;Peng, Mei Mei;Hemalatha, Pushparaj;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.313-317
    • /
    • 2010
  • Li, Zr doped mesoporous silica was synthesized in one pot and investigated for low temperature $CO_2$ adsorption. Herein CTAB and TEOS are used as structural directing agent and silica source respectively. The characteristics of the material was obtained from FT IR, XRD, SEM, TG and BET results. ICP AES results revealed the presence of lithium and zirconium. The material possesses high surface area ($962.22m^2g^{-1}$) with mono dispersed particles of about 2 nm. The maximum $CO_2$ adsorption capacity is 5 wt % (50 mg/g) of $CO_2$/g of sorbent at $25^{\circ}C$, which is regenerable at $200^{\circ}C$. This regeneration temperature of the adsorbent is lower than the reported lithium zirconium silicate powder. Until now, there is no report for the synthesis of Li, Zr doped mesoporous silica. The performance studies illustrate that Li, Zr doped mesoporous silica is tunable, regenerable, recyclable and selective sorbent and hence found to be a promising candidate for $CO_2$ adsorption.

  • PDF

Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems

  • Kleitz, Freddy;Kim, Tae-Wan;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1653-1668
    • /
    • 2005
  • Assembly of hybrid mesophases through the combination of amphiphilic block copolymers, acting as structuredirecting agents, and silicon sources using low acid catalyst concentration regimes is a versatile strategy to produce large quantities of high-quality ordered large-pore mesoporous silicas in a very reproducible manner. Controlling structural and textural properties is proven to be straightforward at low HCl concentrations with the adjustment of synthesis gel composition and the option of adding co-structure-directing molecules. In this account, we illustrate how various types of large-pore mesoporous silica can easily be prepared in high phase purity with tailored pore dimensions and tailored level of framework interconnectivity. Silica mesophases with two-dimensional hexagonal (p6mm) and three-dimensional cubi (Fm$\overline{3}$m, Im$\overline{3}$m and Ia$\overline{3}$d) symmetries are generated in aqueous solution by employing HCl concentrations in the range of 0.1−0.5 M and polyalkylene oxide-based triblock copolymers such as Pluronic P123 $(EO_{20}-PO_{70}-EO_{20})$ and Pluronic F127 $(EO_{106}-PO_{70}-EO_{106})$. Characterizations by powder X-ray diffraction, nitrogen physisorption, and transmission electron microscopy show that the mesoporous materials all possess high specific surface areas, high pore volumes and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Furthermore, we discuss our recent advances achieved in order to extend widely the phase domains in which single mesostructures are formed. Emphasis is put on the first synthetic product phase diagrams obtained in $SiO_2$-triblock copolymer-BuOH-$H_2O$ systems, with tuning amounts of butanol and silica source correspondingly. It is expected that the extended phase domains will allow designed synthesis of mesoporous silicas with targeted characteristics, offering vast prospects for future applications.

Reduction of Nitrate-nigrogen by Zero-valent Iron Adhered in Mesoporous Silicas (메조기공 실리카에 부착된 영가철을 이용한 질산성 질소의 환원)

  • Yeon, Kyeong-Ho;Lee, Seunghak;Lee, Kwanyong;Park, Yong-Min;Kang, Sang-Yoon;Lee, Jae-Won;Choi, Yong-Su;Lee, Sang-Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.139-147
    • /
    • 2007
  • For environmental remediation of a contaminated groundwater plume, the use of zero-valent metal represents one of the latest innovative technologies. In this study, the effects of denitrification by zero-valent iron adsorbed in mesoporous silicas have been studied for groundwater contaminant degradation. The mesoporous silica was functionalized with 3-mercaptopropyltrimethoxysilane (MPTS) ligands and the zero-valent iron precipitated in the mesopore of granular silica was made by $FeCl_2$ and $NaBH_4$. Hydrogen was exchanged with $Fe^{2+}$ ions in the granular silicas. And then the ions were reduced by sodium borohydride in the mesoporous silicas. The surface area of the silica determined via the BET method ranged from 858 to $1275m^2/g$. The reductive reaction of nitrate-nitrogen indicated that the degradation of nitrate-nitrogen appeared to be pseudo first-order with the observed reaction rate constant kobs ($0.1619h^{-1}$) and to be directly proportional to the specific surface area. Therefore, the mesoporous silica with nano zero-valent iron proposed as a novel treatment strategy for contaminated groundwater was successfully implemented herein for the removal of nitrate-nitrogen.

메조기공 유기실리케이트 제조에 대한 템플레이트의 영향

  • 차국헌;조은범;김상철;조휘랑
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.49-49
    • /
    • 2002
  • A strategy for the synthesis of more stable and large periodic mesoporous organo-silica materials has been developed for the 2D hexagonal mesoporous organosilica by the core-shell approach using nonionic PEO-PLGA-PEO triblock copolymer templates. The BET surface area of the solvent-extracted hexagonal mesoporous organosilica is estimated to be 1,016 ㎡/g and the pore volume, pore diameter, and wall thickness are 1.447 ㎤/g, 65 Å, and 43 Å, respectively. More hydrophobic PLGA block than the PPO block used for templates of mesoporous silica proves to be quite effective in confining the organosilicates within the PEO phase. Reaction temperature and acid concentration of an initial solution as well as the chemical nature of the bloc k copolymer templates also demonstrate to be important experimental parameters for ordered organosilica mesophase. Moreover, the mesoporous organosilicas prepared with the PEO-PLGA-PEO block templates maintain their structural integrity for up to 25 days in boiling water at 100℃. The mesoporous materials with large pores and high hydrothermal stability prepared in this study has a potential for many applications.

  • PDF

HMDS Treatment of Ordered Mesoporous Silica Film for Low Dielectric Application (저유전물질로의 응용을 휘한 규칙성 메조포러스 실리카 박막에의 HMDS 처리)

  • Ha, Tae-Jung;Choi, Sun-Gyu;Yu, Byoung-Gon;Park, Hyung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.48-53
    • /
    • 2008
  • In order to reduce signal delay in ULSI, an intermetal material of low dielectric constant is required. Ordered mesoporous silica film is proper to intermetal dielectric due to its low dielectric constant and superior mechanical properties. The ordered mesoporous silica film prepared by TEOS (tetraethoxysilane) / MTES (methyltriethoxysilane) mixed silica precursor and Brij-76 surfactant was surface-modified by HMDS (hexamethyldisilazane) treatment to reduce its dielectric constant. HMDS can substitute $-Si(CH_3)_3$ groups for -OH groups on the surface of silica wall. In order to modify interior silica wall, HMDS was treated by two different processes except the conventional spin coating. One process is that film is dipped and stirred in HMDS/n-hexane solution, and the other process is that film is exposed to evaporated HMDS. Through the investigation with different HMDS treatment, it was concluded that surface modification in evaporated HMDS was more effective to modify interior silica wall of nano-sized pores.

Porous Silica Particles As Chromatographic Separation Media: A Review

  • Cheong, Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3465-3474
    • /
    • 2014
  • Porous silica particles are the most prevailing raw material for stationary phases of liquid chromatography. During a long period of time, various methodologies for production of porous silica particles have been proposed, such as crashing and sieving of xerogel, traditional dry or wet process preparation of conventional spherical particles, preparation of hierarchical mesoporous particles by template-mediated pore formation, repeated formation of a thin layer of porous silica upon nonporous silica core (core-shell particles), and formation of specific silica monolith followed by grinding and calcination. Recent developments and applications of useful porous silica particles will be covered in this review. Discussion on sub-$3{\mu}m$ silica particles including nonporous silica particles, carbon or metal oxide clad silica particles, and molecularly imprinted silica particles, will also be included. Next, the individual preparation methods and their feasibilities will be collectively and critically compared and evaluated, being followed by conclusive remarks and future perspectives.

Synthesis of Mesoporous Hollow Silica Sphere Using Water Glass: Filler for Weight Reduction of Rubber

  • Mun, Hanjun;Bae, Jae Young
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.277-280
    • /
    • 2020
  • In this study, mesoporous hollow silica spheres were synthesized using a polystyrene core and cetyltriammonium chloride (CTACl) as a pore template, and a low-cost water glass instead of expensive tetraethyl orthosilicate (TEOS) as a precursor. In addition, the material was synthesized by varying the concentration of polystyrene. Later, the polystyrene core and CTACl were removed by firing in a high-temperature heat-treatment process. The synthesized product was analyzed by various methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), and N2-sorption analysis. It was confirmed that the hollow silica sphere had a hexagonal structure with a Brunauer-Emmett-Teller (BET) specific area of 1623 ㎡/g.