Browse > Article
http://dx.doi.org/10.14478/ace.2016.1010

Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts  

Kim, Su-Jung (Division of Advanced Material Engineering, Kongju National University)
Jeon, Jong-Ki (Department of Chemical engineering, Kongju National University)
Han, Jeongsik (Agency for Defense Development)
Yim, Jin-Heong (Division of Advanced Material Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.2, 2016 , pp. 190-194 More about this Journal
Abstract
Tricyclopentadiene (TCPD) is one of the important precursors for making tetrahydrotricyclopentadiene, which is well known as a next-generation fuel with high energy density. In this study, TCPD was obtained by polymerization reaction of dicyclopentadiene (DCPD) using an ionic liquid (IL) supported mesoporous silica catalysts. ILs were supported to two kinds of mesoporous silica catalysts with different pore sizes such as MCM-41 and SBA-15. Four different ILs were supported to mesoporous silicas using anionic precursors such as CuCl or $FeCl_3$ and cationic precursors such as triethylamine hydrochloride or 1-butyl-3-methylimidazolium chloride. We proved that IL supported mesoporous silicas showed better catalytic performance than those of using non-supported prestine IL in the aspect of TCPD yield and DCPD conversion. Among four kinds of IL supported mesoporous silica catalysts, CuCl-based IL supported MCM-41 system showed the highest TCPD yield.
Keywords
dicyclopentadiene; tricyclopentadiene; mesoporous silica; ionic liquid; MCM-41; SBA-15;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. S. Chung, C. S. H. Chen, R. A. Kremer, and J. R. Boulton, Recent developments in high-energy density liquid hydrocarbon fuels, Energy Fuels, 13, 641-649 (1999).   DOI
2 T. Edward, Liquid Fuels and Propellants for Aerospace Propulsion: 1903-200, J. Propul. Power, 19, 1089-1107 (2003).   DOI
3 Z. Xiong, Z. Mi, and X. Zhang, Study on the oligomerization of cyclopentadiene and dicyclopentadiene to tricyclopentadiene through Diels-Alder reaction, React. Kinet. Catal. Lett., 85, 89-97 (2005).   DOI
4 I. Palmova, J. Kose, J. Schongut, M. Marek, and K. Stepanek, Experimental and modeling studies of oligomerization and copolymerization of dicyclopentadiene, Chem. Eng. Sci., 56, 927-935 (2001).   DOI
5 Y. Li, J.-J. Zou, X. Zhang, L. Wang, and Z. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene: A theoretical and experimental study, Fuel, 89, 2522-2527 (2010).   DOI
6 L. G. Cannell, High density fuels, US Patent 4,059,644 (1977).
7 M. Y. Huang, J. C. Wu, F. S. Shieu, and J. J. Lin, Isomerization of exo-tetrahydrodicyclopentadiene to adamantane using an acidity-adjustable chloroaluminate ionic liquid, Catal. Commun, 10, 1747-1751 (2009).   DOI
8 J. Kim, J.-Y. Kim, E. Park, J. Han, T. S. Kwon, Y.-K. Park, and J.-K. Jeon, Isomerization of endo-tetrahydrodicyclopentadiene over Y zeolite catalysts, Appl. Chem. Eng., 25(1), 66-71 (2014).   DOI
9 S.-G. Kim, J. Han, J.-K. Jeon, and J.-H. Yim, Ionic liquid-catalyzed isomerization of tetrahydrotricyclopentadiene using various chloroaluminate complexes, Fuel, 137, 109-114 (2014).   DOI
10 D. H. Kim, J.-S. Han, J.-K. Jeon, and J.-H. Yim, A study on the reaction pathway of isomerization of tetrahydrotricyclopentadiene using ionic liquid catalyst, Appl. Chem. Eng., 26(3), 366-371 (2015).   DOI
11 J. S. Wilkes, Properties of ionic liquid solvents for catalysis, J. Mol. Catal. A: Chem., 214, 11-17 (2004).   DOI
12 H. J. Lee, J. S. Lee, and H. S. Kim, Applications of ionic liquids: the state of arts, Appl. Chem. Eng., 21, 129-136 (2010).
13 Y.-L. Yang and Y. Kou, Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe, Chem. Comm., 226-227 (2004).
14 J. S. Beck, J. C. VartUli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenkert, A New family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 114, 10834-10843 (1992).   DOI
15 D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120, 6024-6036 (1998).   DOI
16 W. Cheng, X. Chen, J. Sun, J. Wang, and S. Zhang, SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of $CO_2$ with epoxides, Catal. Today, 200, 117-124 (2013).   DOI
17 M. H. Valkenberg, C. deCastro, and W. F. Holderich, Immobilisation of chloroaluminate ionic liquids on silica materials, Top. Catal., 14, 139-144 (2001).
18 C. P. Mehnert, Supported ionic liquid catalysis, Chem. Eur. J., 11, 50-59 (2005).   DOI
19 M. H. Valkenberg, C. deCastro, and W. F. Holderich, Friedel-Crafts acylation of aromatics catalysed by supported ionic liquids, Appl. Catal. A., 215, 185-190 (2001).   DOI
20 W. Cheng, X. Chen, J. Sun, J. Wang, and S. Zhang, SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of $CO_2$ with epoxides, Catal. Today, 200, 117-124 (2013).   DOI
21 M.-Y. Huang, J.-C. Wu, F.-S. Shieu, and J.-J. Lin, Isomerization of endo-tetrahydrodicyclopentadiene over clay-supported chloroaluminate ionic liquid catalysts, J. Mol. Catal. A: Chem., 315, 69-75 (2010).   DOI
22 K.-Y. Kwak M.-S. Kim, D.-W. Lee, Y.-H. Cho, J. S. Han, T. S. Kwon, and K.-Y. Lee, Synthesis of cyclopentadiene trimer (tricyclopentadiene) over zeolites and Al-MCM-41: The effects of pore size and acidity, Fuel, 137, 230-236 (2014).   DOI