Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1173

Surface Charge and Morphological Characterization of Mesoporous Cellular Foam Silica/Nafion Composite Membrane by Using EFM  

Kwon, Osung (Tabula Rasa College, Keimyung University)
Abstract
Mesoporous silica allows proper hydration of an ion exchange membrane under low relative humidity due to its strong hydrophilicity and structural characteristic. A mesoporous silica and Nafion composite membrane shows good proton conductivity under low relative humidity. An understanding of ion-channel formation and proton transfer through an ion-channel network in mesoporous silica and Nafion composite membranes is essential for the development and the optimization of ion exchange membranes. In this study, a mesoporous cellular foam $SiO_2/Nafion$ composite membrane is fabricated, and its proton conductivity and performance are measured. Also, the ion-channel distribution is analyzed by using electrostatic force microscopy to measure the surface charge density of the mesoporous cellular foam $SiO_2/Nafion$ composite membrane. The research reveals a few remarkable results. First, the composite membrane shows excellent proton conductivity and performance under low relative humidity. Second, the composite membrane is observed to form ion-channel-rich and ion-channel-poor region locally.
Keywords
$SiO_2/Nafion$ composite membrane; Mesoporous cellular foam $SiO_2$; Electrostatic force microscopy; PEM fuel cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. K. Shim, D. K. Paul and K. Karan, Macromolecules 48, 8394 (2015).   DOI
2 A. K. Sahu, K. Ketpang, S. Shanmugam, O. Kwon and S. Lee et al., J. Phys. Chem. C 120, 15855 (2016).   DOI
3 O. Kwon, T. D. Lee and Y. W. Lee, New Phys.: Sae Mulli 65, 303 (2015).   DOI
4 J. Kim, W. J. Jasper and J. P. Hinestroza, J. Eng. Fiber. Fabr. 1, 30 (2006)
5 A. M. Barnes and S. K. Buratto, J. Phys. Chem. B 122, 1289 (2018).   DOI
6 R. Costi, G. Cohen, A. Salant, E. Rabani and U. Banin, Nano Lett. 9, 2031 (2009).   DOI
7 Sigma Aldrich, https://www.sigmaaldrich.com/catalog/product/aldrich/805890?lang=ko®ion=KR (accessed Sep. 10, 2018).
8 Y. D. Premchand, M. L. Di Vona and P. Knauth, Nanocomposites (U.S. Boston, 2008), pp. 71-74.
9 A. Sihvola, J. Nanomater. 2007, 1 (2007).
10 Y. S. Kim and B. Pivovar, ECS Trans. 25, 1425 (2009).
11 Low-Loss Materials in High Frequency Electronics and the Challenges of Measurement, https://wiki.epfl.ch/thz/documents/Materials%20and%20Measurements%20-%20DuPont%20-%20Feb2015.pdf (accessed Sep. 10, 2018).
12 R. Jiang, H. Russell Kunz and J. M. Fenton, J. Membr. Sci. 272, 116 (2006).   DOI
13 W. R. W. Daud, R. E. Rosli, E. H. Majlan, S. A. A. Hamid and R. Mohamed et al., Renew. Energy 113, 620 (2017).   DOI
14 M. Ouyang, L. Xu, J. Li, L. Lu and D Gao et al., J. Power Sources 163, 467 (2006).   DOI
15 T. Kim, Energy 69, 721 (2014).   DOI
16 N. Lapena-Rey, J. A. Blanco, E. Ferreyra, J. L. Lemus and S. Pereira et al., Int. J. Hydrogen Energy 42, 6926 (2017).   DOI
17 K. A. Mauritz, and R. B. Moore, Chem. Rev. 104, 4535 (2004).   DOI
18 W. Y. Hsu and T. D. Gierke, J. Membr. Sci. 13, 307 (1983).   DOI
19 P. Aldebert, B. Dreyfus, G. Gebel, N. Nakamura and M. Pineri et al., J. Phys. France 49, 2101 (1988).   DOI
20 K. Schmidt-Rohr and Q. Chen, Nat. Mater. 7, 75 (2008).   DOI
21 J.-H. Tian, P.-F. Gao, Z.-Y. Zhang, W.-H. Luo and Z.-Q. Shan, Int. J. Hydrogen Energy 33, 5686 (2008).   DOI
22 H. L. Tang and M. Pan, J. Phys. Chem. C 112, 11556 (2008).   DOI
23 Y. Choi, Y. Kim, H. K. Kim and J. S. Lee, J. Membr. Sci. 357, 199 (2010).   DOI
24 X. M. Yan, P. Mei, Y. Z. Mi, L. Gao and S. X. Qin, Electrochem. Commun. 11, 71 (2009).   DOI