• Title/Summary/Keyword: mesoporous carbon

Search Result 118, Processing Time 0.02 seconds

Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O2/N2 Separation (산소/질소 분리를 위한 다층구조 제올라이트 5A를 함유한 탄소분자체 분리막 제조)

  • Li, Wen;Chuah, Chong Yang;Bae, Tae-Hyun
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.260-268
    • /
    • 2020
  • Mixed-matrix carbon molecular sieve membranes containing conventional and hierarchically structured 5A were synthesized for application in oxygen (O2)/nitrogen (N2) separation. In general, incorporating 5A fillers into porous carbon matrices dramatically increased the permeability of the membrane with a marginal decrease in selectivity, resulting in very attractive O2/N2 separation performances. Hierarchical zeolite 5A, which contains both microporous and mesoporous domains, improved the separation performance further, indicating that the mesopores in the zeolite can serve as an additional path for rapid gas diffusion without sacrificing O2/N2 selectivity substantially. This facile strategy successfully and cost-effectively pushed the performance close to the Robeson upper bound. It produced high performance membranes based on Matrimid® 5218 polyimide and zeolite 5A, which are inexpensive commercial products.

Improved Performance of CdS/CdTe Quantum Dot-Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes

  • Shin, Hokyeong;Park, Taehee;Lee, Jongtaek;Lee, Junyoung;Yang, Jonghee;Han, Jin Wook;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2895-2900
    • /
    • 2014
  • We fabricated quantum dot-sensitized solar cells (QDSSCs) using cadmium sulfide (CdS) and cadmium telluride (CdTe) quantum dots (QDs) as sensitizers. A spin coated $TiO_2$ nanoparticle (NP) film on tin-doped indium oxide glass and sputtered Au on fluorine-doped tin oxide glass were used as photo-anode and counter electrode, respectively. CdS QDs were deposited onto the mesoporous $TiO_2$ layer by a successive ionic layer adsorption and reaction method. Pre-synthesized CdTe QDs were deposited onto a layer of CdS QDs using a direct adsorption technique. CdS/CdTe QDSSCs had high light harvesting ability compared with CdS or CdTe QDSSCs. QDSSCs incorporating single-walled carbon nanotubes (SWNTs), sprayed onto the substrate before deposition of the next layer or mixed with $TiO_2$ NPs, mostly exhibited enhanced photo cell efficiency compared with the pristine cell. In particular, a maximum rate increase of 24% was obtained with the solar cell containing a $TiO_2$ layer mixed with SWNTs.

Preparation and Electrochemical Performances Comparison of Carbon and Hydrogel Electrocatalysts for Seawater Battery (해수 전지용 탄소계 촉매와 Hydrogel 촉매의 제조 및 이들의 전기화학적 특성 비교)

  • Kim, Kyoungho;Na, Young Soo;Lee, Man Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • As emerging the new electric devices, the commercial lithium ion batteries have faced with various challenges. In this regard, many efforts to solve challenges have been tried. In order to solve the above problems in terms of development of a new secondary battery, we successfully demonstrated the two electrocatalysts, such as MCWB and PPY hydrogel, PPY hydrogel and MCWB showed typical H3-type BET isotherm, indicating that micro- and mesopores existed. Especially, in terms of voltage efficiency at the first cycle, PPY hydrogel was higher than that of MCWB, but lower than that of PtC. More interestingly, the PPY hygrogel based seawater battery exhibited charge-discharge reversibility during 20 cycles, and the voltage efficiencies ranged from 70.32 % to 77.35 % in cyclic performance test.

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh;Umezu, Ryotaro;Onishi, Kenta;Mukai, Shin R.
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.

WS2 Nanoparticles Embedded in Carbon Nanofibers for a Pseudocapacitor (의사 커패시터를 위한 WS2 나노입자가 내제된 탄소나노섬유)

  • Sung, Ki-Wook;Lee, Jung Soo;Lee, Tae-Kum;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.458-464
    • /
    • 2021
  • Tungsten disulfide (WS2), a typical 2D layerd structure, has received much attention as a pseudocapacitive material because of its high theoretical specific capacity and excellent ion diffusion kinetics. However, WS2 has critical limits such as poor long-term cycling stability owing to its large volume expansion during cycling and low electrical conductivity. Therefore, to increase the high-rate performance and cycling stability for pseudocapacitors, well-dispersed WS2 nanoparticles embedded in carbon nanofibers (WS2-CNFs), including mesopores and S-doping, are prepared by hydrothermal synthesis and sulfurizaiton. These unique nanocomposite electrodes exhibit a high specific capacity (159.6 F g-1 at 10 mV s-1), excellent high-rate performance (81.3 F g-1 at 300 mV s-1), and long-term cycling stability (55.9 % after 1,000 cycles at 100 mV s-1). The increased specific capacity is attributed to well-dispersed WS2 nanoparticles embedded in CNFs that the enlarge active area; the increased high-rate performance is contributed by reduced ion diffusion pathway due to mesoporous CNFs and improved electrical conductivity due to S-doped CNFs; the long-term cycling stability is attributed to the CNFs matrix including WS2 nanoparticles, which effectively prevent large volume expansion.

Gas Separation Properties of Microporous Carbon Membranes Containing Mesopores (중간기공을 갖는 미세다공성 탄소 분리막의 기체 투과 특성)

  • Shin, Jae Eun;Park, Ho Bum
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.221-232
    • /
    • 2018
  • The silica containing carbon ($C-SiO_2$) membranes were fabricated using poly(imide siloxane)(Si-PI) and polyvinylpyrrolidone (PVP) blended polymer. The characteristics of porous carbon structures prepared by the pyrolysis of polymer blends were related with the micro-phase separation behaviors of the two polymers. The glass transition temperatures ($T_g$) of the mixed polymer blends of Si-PI and PVP were observed with a single $T_g$ using differential scanning calorimetry. Furthermore, the nitrogen adsorption isotherms of the $C-SiO_2$ membranes were investigated to define the characteristics of porous carbon structures. The $C-SiO_2$ membranes derived from Si-PI/PVP showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures. For the molecular sieving probe, the $C-SiO_2$ membranes were prepared with the ratio of Si-PI/PVP and the pyrolysis conditions, such as the pyrolysis temperature and the isothermal times. Consequently, the $C-SiO_2$ membranes prepared by the pyrolysis of Si-PI/PVP at $550^{\circ}C$ with the isothermal time of 120 min showed the $O_2$ permeability of 820 Barrer ($1{\times}10^{-10}cm^3(STP)cm/cm^2{\cdot}s{\cdot}cmHg$) and $O_2/N_2$ selectivity of 14.

Electrochemical Properties of Using MnO2-HCS Composite for Supercapacitor (MnO2-HCS 복합체를 이용한 슈퍼커패시터의 전기화학적 특성)

  • Jin, En Mei;Jeong, Sang Mun
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.183-189
    • /
    • 2018
  • Hollow carbon spheres (HCS) and carbon spheres (CS) were prepared by a hydrothermal reaction and they were introduced as a substrate for the deposition of $MnO_2$ nanoparticles. The $MnO_2$ nanoparticles were deposited on the carbon surface by a chemical redox deposition method. After deposition, the $MnO_2$ nanoparticles were uniformally distributed on the carbon surface in a slit-shape, and sparse $MnO_2$ slits appeared on the HCS surface. The $MnO_2-HCS$ showed an initial specific capacitance of $164.1F\;g^{-1}$ at scan rate of $20mv\;s^{-1}$, and after 1,000 cycles, the specific capacitance was maintained to $141.3F\;g^{-1}$. The capacity retention of $MnO_2-HCS$ and $MnO_2-CS$ were calculated to 86% and 78% in the cycle performance test up to 1,000 cycles, respectively. $MnO_2-HCS$ showed a good cycle stability due to the mesoporous hollow structure which can cause a faster diffusion of the electrolyte and can easily adsorb and desorb $Na^+$ ions on the surface of the electrode.

Adsorption of CO2 on Amine-impregnated Mesorporous Silica (아민계 함침 메조포러스 실리카를 이용한 CO2 흡착)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.873-879
    • /
    • 2011
  • Adsorption experiment of carbon dioxide was performed on MCM41 silica impregnated with two kinds of EDA(ethylenediamine) and MEA(monoethanolamine). The prepared adsorbents were characterized by BET surface area, X-ray diffraction and FT-IR. The $CO_2$ capture study was investigated in a U type packed column with GC/TCD. The results of XRD for MCM-41 and amine-impregnated MCM41 showed typical the hexagonal pore system. BET results showed the MCM 41 impregnated amine to have a surface area of 141 $m^2/g$ to 595 $m^2/g$ and FT-IR revealed a N-H functional group at about 1400$cm^{-1}$ to 1600$cm^{-1}$. The $CO_2$ adsorption capacity on EDA and MEA was as follow: MCM41-EDA30 > MCM41 -EDA40 >MCM41-EDA20 >MCM-EDA10 and MCM41-MEA40 >MCM41-MEA30 > MCM41-MEA20> MCM41-MEA10. The MCM41-EDA30 showed the highest adsorption capacity due to physical adsorption and chemical adsorption by amino-group content. The results suggest that mesoporous media with EDA is effective adsorbent for $CO_2$ capture from flue gases.

The Etherification of 2-Naphthol over Mesoporous Solid Acid Catalysts (메조 세공의 고체산 촉매를 이용한 2-나프톨의 에테르화 반응)

  • Kim, Young Jin;Bhatt, Sharad Durgashanker;Yoon, Songhun;Kim, Hee Young;Lee, Yongtaek;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.279-285
    • /
    • 2008
  • The etherification of 2-naphthol with ethanol has been carried out over various solid acid catalysts. CNS, CNSWS, SCMS, MCF, and SBA-15 with and without sulfonic acid were used in this study as solid acid catalysts. The conversion of 2-naphthol and the selectivity of 2-naphthyl ethyl ether were obtained at reaction temperature = $180^{\circ}C$, $LHSV=1h^{-1}$, ethanol/2-naphthol molar ratio = 20 using a fixed-bed down flow reactor. The conversion of 2-naphthol and the selectivity of 2-naphthyl ethyl ether over silica group catalysts were higher than them over carbon group catalysts. The conversion of 2-naphthol was 70-90% and the selectivity of 2-naphthyl ethyl ether was more than 90% over silica group solid acid catalysts. It was performed XRD, SEM, TEM, and $NH_3-TPD$ to characterize solid acid catalysts.

Potential-dependent Complex Capacitance Analysis for Porous Carbon Electrodes (다공성 탄소전극의 전위에 따른 복소캐패시턴스 분석)

  • Jang, Jong H.;Yoon, Song-Hun;Ka, Bok H.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.255-260
    • /
    • 2003
  • The complex capacitance analysis was performed in order to examine the potential-dependent EDLC characteristics of porous carbon electrodes. The imaginary capacitance profiles $(C_{im}\;vs.\;log\lf)$ were theoretically derived for a cylindrical pore and further extended to multiple pore systems. Two important electrochemical parameters in EDLC can be estimated from the peak-shaped imaginary capacitance plots: total capacitance from the peak area and $\alpha_0$ from the peak position. Using this method, the variation of capacitance and ion conductivity in pores can be traced as a function of electric potential. The electrochemical impedance spectroscopy was recorded on the mesoporous carbon electrode as a function of electric potential and analyzed by complex capacitance method. The capacitance values obtained from the peak area showed a maximum at 0.3V (vs. SCE), which was in accordance with cyclic voltammetry result. The ionic conductivity in pores calculated from the peak position showed a maximum at 0.2 V (vs. SCE), then decreased with an increase in potential. This behavior seems due to the enhanced electrostatic interaction between ion and surface charge that becomes enriched at more positive potentials.