Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.4.260

Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O2/N2 Separation  

Li, Wen (School of Chemical and Biomedical Engineering, Nanyang Technological University)
Chuah, Chong Yang (Singapore Membrane Technology Centre, Nanyang Technological University)
Bae, Tae-Hyun (School of Chemical and Biomedical Engineering, Nanyang Technological University)
Publication Information
Membrane Journal / v.30, no.4, 2020 , pp. 260-268 More about this Journal
Abstract
Mixed-matrix carbon molecular sieve membranes containing conventional and hierarchically structured 5A were synthesized for application in oxygen (O2)/nitrogen (N2) separation. In general, incorporating 5A fillers into porous carbon matrices dramatically increased the permeability of the membrane with a marginal decrease in selectivity, resulting in very attractive O2/N2 separation performances. Hierarchical zeolite 5A, which contains both microporous and mesoporous domains, improved the separation performance further, indicating that the mesopores in the zeolite can serve as an additional path for rapid gas diffusion without sacrificing O2/N2 selectivity substantially. This facile strategy successfully and cost-effectively pushed the performance close to the Robeson upper bound. It produced high performance membranes based on Matrimid® 5218 polyimide and zeolite 5A, which are inexpensive commercial products.
Keywords
hierarchical zeolite; carbon molecular sieve membrane; $O_2/N_2$ separation; mixed-matrix membrane;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 T. H. Nguyen, S. Kim, M. Yoon, and T. H. Bae, "Hierarchical zeolites with amine-functionalized mesoporous domains for carbon dioxide capture", ChemSusChem, 9, 455 (2016).   DOI
2 W. Li, S. Samarasinghe, and T.-H. Bae, "Enhancing $CO_2/CH_4$ separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8", J. Ind. Eng. Chem., 67, 156 (2018).   DOI
3 T. H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones, and S. A Nair, "High-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals", Angew. Chem. Int. Ed., 49, 9863 (2010).   DOI
4 C. Y. Chuah, S. Yu, K. Na, and T.-H. Bae, "Enhanced $SF_6$ recovery by hierarchically structured MFI zeolite", J. Ind. Eng. Chem., 62, 64 (2018).   DOI
5 J.-R. Li, R. J. Kuppler, and H.-C. Zhou, "Selective gas adsorption and separation in metal-organic frameworks", Chem. Soc. Rev., 38, 1477 (2009).   DOI
6 S. Nandi and P. Walker Jr, "Separation of oxygen and nitrogen using 5A zeolite and carbon molecular sieves", Sep. Sci. Technol., 11, 441 (1976).   DOI
7 F. Weigelt, P. Georgopanos, S. Shishatskiy, V. Filiz, T. Brinkmann, and V. Abetz, "Development and characterization of defect-free matrimid$^{(R)}$ mixed-matrix membranes containing activated carbon particles for gas separation", Polymers, 10, 51 (2018).   DOI
8 C. Y. Chuah and T.-H. Bae, "Incorporation of $Cu_3BTC_2$ nanocrystals to increase the permeability of polymeric membranes in $O_2/N_2$ separation", BMC Chem. Eng., 1, 2 (2019).   DOI
9 A. Fuertes, D. Nevskaia, and T. Centeno, "Carbon composite membranes from Matrimid$^{(R)}$ and Kapton$^{(R)}$ polyimides for gas separation", Micropor. Mesopor. Mater., 33, 115 (1999).   DOI
10 P. Baskar and A. Senthilkumar, "Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine", Eng. Sci. Technol. Int. J., 19, 438 (2016).   DOI
11 D. Gielen, "$CO_2$ removal in the iron and steel industry", Energy Convers. Manag., 44, 1027 (2003).   DOI
12 R. Chen and W. Yeun, "Review of the high-temperature oxidation of iron and carbon steels in air or oxygen", Oxid. Met., 59, 433 (2003).   DOI
13 M. S. Rahman and C. O. Perera, "Drying and food preservation", In Handbook of Food Preservation, p. 173, Marcel Dekker, New York (1999).
14 R. Cornelissen and G. Hirs, "Exergy analysis of cryogenic air separation", Energy Convers. Manag., 39, 1821 (1998).   DOI
15 Y. Zhu, X. Liu, and Z. Zhou, "Optimization of cryogenic air separation distillation columns", In Proceedings of 2006 6th World Congress on Intelligent Control and Automation, p. 7702 (2006).
16 A. Smith and J. Klosek, "A review of air separation technologies and their integration with energy conversion processes", Fuel Process. Technol., 70, 115 (2001).   DOI
17 D. Ruthven and S. Farooq, "Air separation by pressure swing adsorption", Gas Sep. Purif., 4, 141 (1990).   DOI
18 M. Hassan, D. Ruthven, and N. Raghavan, "Air separation by pressure swing adsorption on a carbon molecular sieve", Chem. Eng. Sci., 41, 1333 (1986).   DOI
19 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
20 L. Jiang, L. T. Biegler, and V. G. Fox, "Simulation and optimization of pressure-swing adsorption systems for air separation" AIChE J., 49, 1140 (2003).   DOI
21 L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991).   DOI
22 H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007).   DOI
23 R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, "High pressure pure-and mixed-gas separation of $CO_2/CH_4$ by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity", J. Membr. Sci., 447, 387 (2013).   DOI
24 R. Kumar and W. J. Koros, "High performance carbon molecular sieve membranes resistance to aggressive feed stream contaminants", Ind. Eng. Chem. Res., 58, 6740 (2019).   DOI
25 W. Salleh, A. Ismail, T. Matsuura, and M. Abdullah, "Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review", Sep. Purif. Rev., 40, 261 (2011).   DOI
26 W. Salleh and A. Ismail, "Effects of carbonization heating rate on $CO_2$ separation of derived carbon membranes", Sep. Purif. Technol., 88, 174 (2012).   DOI
27 C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012).   DOI
28 L. Li, T. Wang, Q. Liu, Y. Cao, and J. Qiu, "A high $CO_2$ permselective mesoporous silica/carbon composite membrane for $CO_2$ separation", Carbon, 50, 5186 (2012).   DOI
29 H. Gong, C. Y. Chuah, Y. Yang, and T.-H. Bae, "High performance composite membranes comprising $Zn(pyrz)_2(SiF_6)$ nanocrystals for $CO_2/CH_4$ separation", J. Ind. Eng. Chem., 60, 279 (2018).   DOI
30 B. Zhang, Y. Shi, Y. Wu, T. Wang, and J. Qiu, "Towards the preparation of ordered mesoporous carbon/carbon composite membranes for gas separation" Sep. Sci. Technol., 49, 171 (2014).   DOI
31 X. Yin, N. Chu, J. Yang, J. Wang, and Z. Li, Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for $CO_2$ separation", Int. J. Greenh. Gas Con., 15, 55 (2013).   DOI
32 P. S. Tin, T.-S. Chung, L. Jiang, and S. Kulprathipanja, "Carbon-zeolite composite membranes for gas separation", Carbon, 43, 2025 (2005).   DOI
33 X. Yin, J. Wang, N. Chu, J. Yang, J. Lu, Y. Zhang, and D. Yin, "Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties", J. Membr. Sci., 348, 181 (2010).   DOI
34 C. Y. Chuah, K. Goh, Y. Yang, H. Gong, W. Li, H. E. Karahan, M. D. Guiver, R. Wang, and T.-H. Bae, "Harnessing filler materials for enhancing biogas separation membranes", Chem. Rev., 118, 8655 (2018).   DOI
35 A. Corma, "From microporous to mesoporous molecular sieve materials and their use in catalysis", Chem. Rev., 97, 2373 (1997).   DOI
36 C. Y. Chuah, K. Goh, and T.-H. Bae, "Hierarchically structured HKUST-1 nanocrystals for enhanced $SF_6$ capture and recovery", J. Phys. Chem. C, 121, 6748 (2017).   DOI