Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.8.458

WS2 Nanoparticles Embedded in Carbon Nanofibers for a Pseudocapacitor  

Sung, Ki-Wook (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Jung Soo (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Tae-Kum (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.31, no.8, 2021 , pp. 458-464 More about this Journal
Abstract
Tungsten disulfide (WS2), a typical 2D layerd structure, has received much attention as a pseudocapacitive material because of its high theoretical specific capacity and excellent ion diffusion kinetics. However, WS2 has critical limits such as poor long-term cycling stability owing to its large volume expansion during cycling and low electrical conductivity. Therefore, to increase the high-rate performance and cycling stability for pseudocapacitors, well-dispersed WS2 nanoparticles embedded in carbon nanofibers (WS2-CNFs), including mesopores and S-doping, are prepared by hydrothermal synthesis and sulfurizaiton. These unique nanocomposite electrodes exhibit a high specific capacity (159.6 F g-1 at 10 mV s-1), excellent high-rate performance (81.3 F g-1 at 300 mV s-1), and long-term cycling stability (55.9 % after 1,000 cycles at 100 mV s-1). The increased specific capacity is attributed to well-dispersed WS2 nanoparticles embedded in CNFs that the enlarge active area; the increased high-rate performance is contributed by reduced ion diffusion pathway due to mesoporous CNFs and improved electrical conductivity due to S-doped CNFs; the long-term cycling stability is attributed to the CNFs matrix including WS2 nanoparticles, which effectively prevent large volume expansion.
Keywords
pseudocapacitor; transition metal dichalcogenide; tungsten disulfide; carbon nanofiber; sulfurization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Chen, T. Zhao, W. Wu, F. Wu, L. Li, J. Qian, R. Xu, H. Wu, H. M. Albishri, A. S. Al-Bogami, D. A. ElHady, J. Lu and K. Amine, Nano Lett., 14, 5899 (2014).   DOI
2 D.-Y. Shin, J. Lee and H.-J. Ahn, Appl. Surf. Sci., 550, 149298 (2021).   DOI
3 D.-Y. Shin, H.-G. Jo and H.-J. Ahn, Appl. Surf. Sci., 527, 146895 (2020).   DOI
4 G.-H. An and H.-J. Ahn, Appl. Surf. Sci., 473, 77 (2019).   DOI
5 K.-H. Kim, J. Lee and H.-J. Ahn, Appl. Surf. Sci., 550, 149266 (2021).   DOI
6 D.-Y. Shin, G.-H. An and H.-J. Ahn, Ceram. Int., 44, 4883 (2018).   DOI
7 S. Manzeli, D. Ovchinnilkov, D. Pasquier, O. V. Yazyev and A. Kis, Nat. Rev. Mater., 2, 17033 (2017).   DOI
8 D.-Y. Shin, J. Lee, B.-R. Koo and H.-J. Ahn, Chem. Eng. J., 412, 128547 (2021).   DOI
9 S. Ratha and C. S. Rout, ACS Appl. Mater. Interfaces, 5, 11427 (2013).   DOI
10 B. Hu, X. Qin, A. M. Asiri, K. A. Alamry, A. O. Al-Youbi and X. Sun, Electrochem. Commun., 28, 75 (2013).   DOI
11 S. Wang, S. V. Kershaw, G. Li and M. K. H. Leung, J. Mater. Chem. C, 3, 3280 (2015).   DOI
12 W. O. Stacy, F. J. Vastola and P. L. Walker, Carbon, 6, 917 (1968).   DOI
13 N. Hasheminejad, H. Tavakol and W. Salvenmoser, J. Clean Prod., 264, 121684 (2020).   DOI
14 K.-W. Sung, D.-Y. Shin and H.-J. Ahn, Korean J. Mater. Res., 29, 623 (2019).   DOI
15 Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 192 (2017).   DOI
16 L. Su, L. Luo, H. Song, Z. Wu, W. Tu, Z.-J, Wang and J. Ye, Chem. Eng. J., 388, 124346 (2020).   DOI
17 D.-Y. Shin, K.-W. Sung and H.-J. Ahn, Appl. Surf. Sci., 478, 499 (2019).   DOI
18 X. Li, Z. Pan, Z. Li, X. Wang, B. Saravanakumar, Y. Zhong, L. Xing, M. Xu, C. Guo and W. Li, J. Power Sources, 420, 22 (2019).   DOI
19 K.-W. Sung, B.-R. Koo and H.-J. Ahn, J. Alloys Compd., 854, 157206 (2021).   DOI
20 Y.-J. Lee and H.-J Ahn, J. Korean Powder Metall. Inst., 22, 116 (2015).   DOI