• 제목/요약/키워드: mesh-free

검색결과 294건 처리시간 0.024초

Numerical simulation of wave slamming on wedges and ship sections during water entry

  • Ma, Zhihua;Qian, Ling
    • Ocean Systems Engineering
    • /
    • 제8권2호
    • /
    • pp.183-199
    • /
    • 2018
  • The open source software OpenFOAM is utilised to simulate the water entry and hydrodynamic impact process of 2D wedges and ship hull sections. Incompressible multiphase flow solver interDyMFoam is employed to calculate the free fall of structure from air into water using dynamically deforming mesh technique. Both vertical and oblique entry of wedges of various dead-rise angles have been examined. A convergence study of dynamics as well as kinematics of the flow problem is carried out on successively refined meshes. Obtained results are presented and compared to the experimental measurements showing good agreement and reasonable mesh convergence of the solution.

A mesh-free analysis method of structural elements of engineering structures based on B-spline wavelet basis function

  • Chen, Jianping;Tang, Wenyong;Huang, Pengju;Xu, Li
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.281-294
    • /
    • 2016
  • The paper is devoted to study a mesh-free analysis method of structural elements of engineering structures based on B-spline Wavelet Basis Function. First, by employing the moving-least square method and the weighted residual method to solve the structural displacement field, the control equations and the stiffness equations are obtained. And then constructs the displacement field of the structure by using the m-order B-spline wavelet basis function as a weight function. In the end, the paper selects the plane beam structure and the structure with opening hole to carry out numerical analysis of deformation and stress. The Finite Element Method calculation results are compared with the results of the method proposed, and the calculation results of the relative error norm is compared with Gauss weight function as weight function. Therefore, the clarification verified the validity and accuracy of the proposed method.

최소자승법과 Level-set 방법을 이용한 3차원 슬로싱 유동의 수치해석 (Numerical analysis of three-dimensional sloshing flow using least-square and level-set method)

  • 최형권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2401-2405
    • /
    • 2008
  • In the present study, a three-dimensional least square/level set based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The present method can be utilized for the analysis of a free surface flow problem in a complex geometry due to the feature of FEM. Since the finite element method is employed for the spatial discretization of governing equations, an unstructured mesh can be naturally adopted for the level set simulation of a free surface flow without an additional load for the code development except that solution methods of the hyperbolic type redistancing and advection equations of the level set function should be devised in order to give a bounded solution on the unstructured mesh. From the numerical experiments of the present study, it is shown that the proposed method is both robust and accurate for the simulation of three-dimensional sloshing problems.

  • PDF

Reducing the Search Space for Pathfinding in Navigation Meshes by Using Visibility Tests

  • Kim, Hyun-Gil;Yu, Kyeon-Ah;Kim, Jun-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.867-873
    • /
    • 2011
  • A navigation mesh (NavMesh) is a suitable tool for the representation of a three-dimensional game world. A NavMesh consists of convex polygons covering free space, so the path can be found reliably without detecting collision with obstacles. The main disadvantage of a NavMesh is the huge state space. When the $A^*$ algorithm is applied to polygonal meshes for detailed terrain representation, the pathfinding can be inefficient due to the many states to be searched. In this paper, we propose a method to reduce the number of states searched by using visibility tests to achieve fast searching even on a detailed terrain with a large number of polygons. Our algorithm finds the visible vertices of the obstacles from the critical states and uses the heuristic function of $A^*$, defined as the distance to the goal through such visible vertices. The results show that the number of searched states can be substantially reduced compared to the $A^*$ search with a straight-line distance heuristic.

The Influence of Meshing Strategies on the Propeller Simulation by CFD

  • Bahatmaka, Aldias;Kim, Dong-Joon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.78-85
    • /
    • 2018
  • This paper presents a study of the effects of the free surface to marine propeller including the mesh effect of the models. In the present study, we conduct the numerical simulation for propeller performance employing the openwater test. The numerical simulations compare the meshing strategies for the propeller and show the effects on both thrust and torque. OpenFOAM is applied to solve the propeller problem and then open water performances of KCS propeller (KP505) are estimated using a Reynold-averaged Navier-Stokes equations (RANS) solver and the turbulence of the $K-{\omega}$ SST model. Unstructured meshes are used in the numerical simulation employing hexahedral meshing for mesh generation. The arbitrary mesh interfacing (AMI) and multiple rotating frame (MRF) are compared to define the best meshing strategy. The meshing strategies are evaluated through 3 classifications, i.e., coarse, medium, and fine mesh. Thus, the propeller can be performed utilizing the best mesh strategy. The computational results are validated by comparison with the experimental results. The $K_T$, $K_Q$, and efficiency of the propeller are compared to an experimental result and for all of the meshing strategies. Thus, the simulations show the influence of meshing in order to perform the propeller performances.

불완전한 2차원다양체 메시기반 공추경로생성 (Incomplete 2-manifold Mesh Based Tool Path Generation)

  • 이성근;김수진;양민양;이동윤
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.447-454
    • /
    • 2005
  • This paper presents a new paradigm for 3-axis tool path generation based on an incomplete 2-manifold mesh model, namely, an inexact polyhedron. When geometric data is transferred from one system to another system and tessellated for tool path generation, the model does not have any topological data between meshes and facets. In contrast to the existing polyhedral machining approach, the proposed method generates tool paths from an incomplete 2-manifold mesh model. In order to generate gouge-free tool paths, CL-meshes are generated by offsetting boundary edges, boundary vertices, and facets. The CL-meshes are sliced by machining planes and the calculated intersections are sorted, trimmed, and linked. The grid method is used to reduce the computing time when range searching problems arise. The method is fully implemented and verified by machining an incomplete 2-manifold mesh model.

Jacobian-free Newton Krylov two-node coarse mesh finite difference based on nodal expansion method

  • Zhou, Xiafeng
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3059-3072
    • /
    • 2022
  • A Jacobian-Free Newton Krylov Two-Nodal Coarse Mesh Finite Difference algorithm based on Nodal Expansion Method (NEM_TNCMFD_JFNK) is successfully developed and proposed to solve the three-dimensional (3D) and multi-group reactor physics models. In the NEM_TNCMFD_JFNK method, the efficient JFNK method with the Modified Incomplete LU (MILU) preconditioner is integrated and applied into the discrete systems of the NEM-based two-node CMFD method by constructing the residual functions of only the nodal average fluxes and the eigenvalue. All the nonlinear corrective nodal coupling coefficients are updated on the basis of two-nodal NEM formulation including the discontinuity factor in every few newton steps. All the expansion coefficients and interface currents of the two-node NEM need not be chosen as the solution variables to evaluate the residual functions of the NEM_TNCMFD_JFNK method, therefore, the NEM_TNCMFD_JFNK method can greatly reduce the number of solution variables and the computational cost compared with the JFNK based on the conventional NEM. Finally the NEM_TNCMFD_JFNK code is developed and then analyzed by simulating the representative PWR MOX/UO2 core benchmark, the popular NEACRP 3D core benchmark and the complicated full-core pin-by-pin homogenous core model. Numerical solutions show that the proposed NEM_TNCMFD_JFNK method with the MILU preconditioner has the good numerical accuracy and can obtain higher computational efficiency than the NEM-based two-node CMFD algorithm with the power method in the outer iteration and the Krylov method using the MILU preconditioner in the inner iteration, which indicates the NEM_TNCMFD_JFNK method can serve as a potential and efficient numerical tool for reactor neutron diffusion analysis module in the JFNK-based multiphysics coupling application.

A Strategy for the Simulation of Adhesive Layers

  • Ochsner, A.;Mishuris, G.;Gracio, J.
    • 접착 및 계면
    • /
    • 제6권1호
    • /
    • pp.1-6
    • /
    • 2005
  • The high accurate simulation of very thin glue layers based on the finite element method is still connected to many problems which result from the necessity to construct a complicated mesh of essentially different sizes of elements. This can lead to a loss of accuracy, unstable calculations and even loss of convergence. However, the implementation of special transmission elements along the glue ling and special edge-elements in the near-edge region would lead to a dramatic decrease of number of finite elements in the mesh and thus, prevent unsatisfactory phenomena in numerical analysis and extensive computation time. The theoretical basis for such special elements is the knowledge about appropriate transmission conditions and the edge effects near the free boundary of the adhesive layer. Therefore, recently proposed so-called non-classical transmission conditions and the behavior near the free edge are investigated in the context of the single-lap tensile-shear test of adhesive technology.

  • PDF

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

OFDM-TDMA 메쉬 네트워크를 위한 다중경로 QoS 라우팅 프로토콜 (A Multi-path QoS Routing Protocol for the OFDM-TDMA Mesh Networks)

  • 최정욱;이혁준
    • 한국ITS학회 논문지
    • /
    • 제14권1호
    • /
    • pp.57-67
    • /
    • 2015
  • 무선 메쉬 네트워크에서 다중경로 라우팅 프로토콜은 QoS 충족 또는 링크 단절에 대한 강건성 확보를 위한 해결책으로 자주 사용되어 왔으며, 무선 전술통신 및 재난구조 통신에서는 QoS와 강건성을 동시에 충족시키는 방법에 대한 필요성이 강조되고 있다. 본 논문에서 제안하는 라우팅 프로토콜은 OFDM-TDMA collision-free MAC을 기반으로 on-demand 방식으로 대역폭 및 지연시간 제한을 포함하는 사용자의 세션별 QoS 요구사항을 충족시켜 줄 수 있는 다중경로들을 탐색 및 관리하고, 전송실패가 발생할 경우 경로 재탐색 이전에 대체경로를 선택하여 데이터를 재전송하도록 함으로써 지연 및 수용능력 간 트레이드오프를 완화하는 동시에 강건성을 증가시킨다. 본 논문에서는 시뮬레이션을 통해 제안하는 프로토콜의 성능을 분석하여 제안하는 프로토콜이 QoS 보장 측면과 데이터의 전송성공률 측면에서 우수을 보인다.